高级算法 (Fall 2021)/Problem Set 4: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>TCSseminar
imported>TCSseminar
Line 20: Line 20:
\text{maximize} &&& \sum_{(u,v)\in E}\langle x_u,x_v\rangle+\sum_{(u,v)\in F}(1-\langle x_u,x_v\rangle) \\
\text{maximize} &&& \sum_{(u,v)\in E}\langle x_u,x_v\rangle+\sum_{(u,v)\in F}(1-\langle x_u,x_v\rangle) \\
\text{subject to} && \langle x_u,x_u\rangle=1 & \forall u\in V, \\
\text{subject to} && \langle x_u,x_u\rangle=1 & \forall u\in V, \\
&& \langle x_u,x_u\rangle\ge0 & \forall u,v\in V, \\
&& \langle x_u,x_v\rangle\ge0 & \forall u,v\in V, \\
&& x_u\in R^n & \forall u\in V.
&& x_u\in R^n & \forall u\in V.
\end{align}
\end{align}
</math>
</math>

Revision as of 08:03, 20 December 2021

  • 每道题目的解答都要有完整的解题过程。中英文不限。

Problem 1

Problem 2

A [math]\displaystyle{ k }[/math]-uniform hypergraph is an ordered pair [math]\displaystyle{ G=(V,E) }[/math], where [math]\displaystyle{ V }[/math] denotes the set of vertices and [math]\displaystyle{ E }[/math] denotes the set of edges. Moreover, each edge in [math]\displaystyle{ E }[/math] now contains [math]\displaystyle{ k }[/math] distinct vertices, instead of [math]\displaystyle{ 2 }[/math] (so a [math]\displaystyle{ 2 }[/math]-uniform hypergraph is just what we normally call a graph). A hypergraph is [math]\displaystyle{ k }[/math]-regular if all vertices have degree [math]\displaystyle{ k }[/math]; that is, each vertex is exactly contained within [math]\displaystyle{ k }[/math] hypergraph edges.

Show that for sufficiently large [math]\displaystyle{ k }[/math], the vertices of a [math]\displaystyle{ k }[/math]-uniform, [math]\displaystyle{ k }[/math]-regular hypergraph can be [math]\displaystyle{ 2 }[/math]-colored so that no edge is monochromatic. What's the smallest value of [math]\displaystyle{ k }[/math] you can achieve?

Problem 3

Suppose we have graphs [math]\displaystyle{ G=(V,E) }[/math] and [math]\displaystyle{ H=(V,F) }[/math] on the same vertex set. We wish to partition [math]\displaystyle{ V }[/math] into clusters [math]\displaystyle{ V_1,V_2,\cdots }[/math] so as to maximise:

[math]\displaystyle{ (\#\text{ of edges in }E\text{ that lie within clusters})+(\#\text{ of edges in }F\text{ that lie between clusters}). }[/math]
  • Show that the following SDP is an upperbound on this.
[math]\displaystyle{ \begin{align} \text{maximize} &&& \sum_{(u,v)\in E}\langle x_u,x_v\rangle+\sum_{(u,v)\in F}(1-\langle x_u,x_v\rangle) \\ \text{subject to} && \langle x_u,x_u\rangle=1 & \forall u\in V, \\ && \langle x_u,x_v\rangle\ge0 & \forall u,v\in V, \\ && x_u\in R^n & \forall u\in V. \end{align} }[/math]