概率论与数理统计 (Spring 2023)/Problem Set 2
目前作业非最终版本!
Problem 1 (Warm-up problems)
- [Function of random variable (I)] Let [math]X[/math] be a random variable and [math]g:\mathbb{R} \to \mathbb{R}[/math] be a continuous and strictly increasing function. Show that [math]Y = g(X)[/math] is a random variable.
- [Function of random variable (II)] Let [math]X[/math] be a random variable with distribution function [math]\max(0,\min(1,x))[/math]. Let [math]F[/math] be a distribution function which is continuous and strictly increasing. Show that [math]Y=F^{-1}(X)[/math] be a random variable with distribution function [math]F[/math].
- [Marginal distribution] Let [math](X_1, X_2)[/math] be a random vector satisfying [math]\mathbf{Pr}[(X_1,X_2) = (0,0)] = \mathbf{Pr}[(X_1,X_2) = (1,0)] = \mathbf{Pr}[(X_1,X_2)=(0,1)]=\frac{1}{3}[/math]. Find out the marginal distribution of [math]X_1[/math].
- [Independence] Show that discrete random variables [math]X[/math] and [math]Y[/math] are independent if and only if [math]f_{X,Y}(x,y) = f_X(x) f_Y(y)[/math], where [math]f_{X,Y}[/math] is the joint mass function of [math](X,Y)[/math], and [math]f_X[/math] (respectively, [math]f_Y[/math]) is the mass function of [math]X[/math] (respectively, [math]Y[/math]).
- [Entropy of discrete random variable] Let [math]X[/math] be a discrete random variable with range of values [math]\mathbb{N}_+[/math] and probability mass function [math]p[/math]. Define [math]H(X) = -\sum_{n \ge 1} p(n) \log p(n)[/math] with convention [math]0\log 0 = 0[/math]. Prove that [math]H(X) \ge 0[/math] using Jensen's inequality.
- [Law of total expectation] Let [math]X \sim \mathrm{Geom}(p)[/math] for some parameter [math]p \in (0,1)[/math]. Calculate [math]\mathbf{E}[X][/math] using the law of total expectation.
Problem 2 (Distribution of random variable)
- [CDF] Let [math]\displaystyle{ X }[/math] be a random variable with cumulative distribution function [math]\displaystyle{ F }[/math].
- Show that [math]\displaystyle{ Y = aX+b }[/math] is a random variable where [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math] are real constants, and express the CDF of [math]\displaystyle{ Y }[/math] by [math]\displaystyle{ F }[/math].
- Let [math]\displaystyle{ G }[/math] be the CDF of random variable [math]\displaystyle{ Z:\Omega\rightarrow \mathbb{R} }[/math] and [math]\displaystyle{ 0\leq \lambda \leq 1 }[/math], show that
- [math]\displaystyle{ \lambda F + (1-\lambda)G }[/math] is a CDF function.
- The product [math]\displaystyle{ FG }[/math] is a CDF function, and if [math]\displaystyle{ Z }[/math] and [math]\displaystyle{ X }[/math] are independent, then [math]\displaystyle{ FG }[/math] is the CDF of [math]\displaystyle{ \max\{X,Z\} }[/math].
- [PMF] We toss [math]\displaystyle{ n }[/math] coins, and each one shows heads with probability [math]\displaystyle{ p }[/math], independently of each of the others. Each coin which shows head is tossed again. (If the coin shows tail, it won't be tossed again.) Let [math]\displaystyle{ X }[/math] be the number of heads resulting from the second round of tosses, and [math]\displaystyle{ Y }[/math] be the number of heads resulting from all tosses, which includes the first and (possible) second round of each toss.
- Find the PMF of [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math].
- Find [math]\displaystyle{ \mathbb{E}[X] }[/math] and [math]\displaystyle{ \mathbb{E}[Y] }[/math].
- Let [math]\displaystyle{ f }[/math] be the PMF of [math]\displaystyle{ X }[/math], show that [math]f(k-1)f(k+1)\leq f(k)^2[/math] for [math]\displaystyle{ 1\leq k \leq n-1 }[/math].
- [PDF] Let [math]p(x) = C e^{-x-e^{-x}}[/math]. Find the value of [math]C[/math] so that [math]p[/math] is a probability density function.
Problem 3 (Discrete random variable, 20 points)
- Find the expected number of days which elapse between the acquisitions of the [math]j[/math]-th new type of object and the [math](j + 1)[/math]-th new type.
- Find the expected number of days which elapse before you have a full set of objects.
- Find the PMF of [math]B[/math].
- Show that if [math]N, b[/math], and [math]r[/math] approach [math]\infty[/math] in such a way that [math]b/N \rightarrow p[/math] and [math]r/N \rightarrow 1 - p[/math], then
$$\mathbf{Pr}(B = k) \rightarrow {n\choose k}p^k(1-p)^{n-k}$$ for [math]0\leq k \leq n[/math].