Randomized Algorithms (Spring 2010)/Markov chains and random walks

From TCS Wiki
Revision as of 10:44, 27 April 2010 by imported>WikiSysop (→‎Stationary distributions)
Jump to navigation Jump to search

Markov Chains

The Markov property and transition matrices

Definition (the Markov property)
A process [math]\displaystyle{ X_0,X_1,\ldots }[/math] satisfies the Markov property if
[math]\displaystyle{ \Pr[X_{n+1}=x_{n+1}\mid X_{0}=x_{0}, X_{1}=x_{1},\ldots,X_{n}=x_{n}]=\Pr[X_{n+1}=x_{n+1}\mid X_{n}=x_{n}] }[/math]
for all [math]\displaystyle{ n }[/math] and all [math]\displaystyle{ x_0,\ldots,x_{n+1}\in \mathcal{S} }[/math].

The Markov property describes the memoryless property of a Markov chain: "conditioning on the present, the future does not depend on the past."

A discrete time stochastic process [math]\displaystyle{ X_0,X_1,\ldots }[/math] is a Markov chain if it has the Markov property.

Stationary distributions

Definition (stationary distribution)
A stationary distribution of a Markov chain is a probability distribution [math]\displaystyle{ \pi }[/math] such that
[math]\displaystyle{ \begin{align}\pi P=\pi\end{align} }[/math].

Classification of states

Irreducibility and aperiodicity

Definition (irreducibility)
State [math]\displaystyle{ j }[/math] is accessible from state [math]\displaystyle{ i }[/math] if it is possible for the chain to visit state [math]\displaystyle{ j }[/math] if the chain starts in state [math]\displaystyle{ i }[/math], or, in other words,
[math]\displaystyle{ \begin{align}P^n(i,j)\gt 0\end{align} }[/math]
for some integer [math]\displaystyle{ n\ge 0 }[/math]. State [math]\displaystyle{ i }[/math] communicates with state [math]\displaystyle{ j }[/math] if [math]\displaystyle{ j }[/math] is accessible from [math]\displaystyle{ i }[/math] and [math]\displaystyle{ i }[/math] is accessible from [math]\displaystyle{ j }[/math].
We say that the Markov chain is irreducible if all pairs of states communicate.


Definition (aperiodicity)
The period of a state [math]\displaystyle{ i }[/math] is the greatest common divisor (gcd)
[math]\displaystyle{ \begin{align}d_i=\gcd\{n\mid P^n(i,i)\gt 0\}\end{align} }[/math].
A state is aperiodic if its period is 1. A Markov chain is aperiodic if all its states are aperiodic.

Recurrence and Ergodicity

Definition (recurrence)
A state [math]\displaystyle{ i }[/math] is recurrent if [math]\displaystyle{ \Pr[T_i\lt \infty\mid X_0=i]=1 }[/math]. If [math]\displaystyle{ i }[/math] is not recurrent, it is called transient.
A recurrent state [math]\displaystyle{ i }[/math] is null recurrent if [math]\displaystyle{ h_{i,i}=\infty }[/math]. Otherwise, it is positive recurrent.


Definition (ergodicity)
An aperiodic, positive recurrent state is an ergodic state. A Markov chain is ergodic if all its states are ergodic.

The basic limit theorem

Theorem (Basic limit theorem)
Let [math]\displaystyle{ X_0,X_1,\ldots, }[/math] be an irreducible, aperiodic Markov chain having a stationary distribution [math]\displaystyle{ \pi }[/math]. Let [math]\displaystyle{ X_0 }[/math] have the distribution [math]\displaystyle{ \pi_0 }[/math], an arbitrary initial distribution. Then
[math]\displaystyle{ \lim_{n\rightarrow\infty}\pi_n(i)=\pi(i) }[/math]
for all states [math]\displaystyle{ i }[/math].

Random Walks on Graphs

Hitting and covering

Mixing