Combinatorics (Fall 2010)/Basic enumeration
Counting Problems
Functions and Tuples
Sets and Multisets
Let[math]\displaystyle{ S=\{x_1,x_2,\ldots,x_n\} }[/math] be an [math]\displaystyle{ n }[/math]-element set, or [math]\displaystyle{ n }[/math]-set for short. Let [math]\displaystyle{ 2^S=\{T\mid T\subset S\} }[/math] denote the set of all subset of [math]\displaystyle{ S }[/math]. [math]\displaystyle{ 2^S }[/math] is called the power set of [math]\displaystyle{ S }[/math].
Permutations and Partitions
The twelvfold way
[math]\displaystyle{ f:N\rightarrow M }[/math]
Elements of [math]\displaystyle{ N }[/math] | Elements of [math]\displaystyle{ M }[/math] | Any [math]\displaystyle{ f }[/math] | Injective (1-1) [math]\displaystyle{ f }[/math] | Surjective (on-to) [math]\displaystyle{ f }[/math] |
---|---|---|---|---|
distinguishable | distinguishable | [math]\displaystyle{ m^n\, }[/math] | [math]\displaystyle{ \left(m\right)_n }[/math] | [math]\displaystyle{ m!S(n, m)\, }[/math] |
indistinguishable | distinguishable | [math]\displaystyle{ \left({m\choose n}\right) }[/math] | [math]\displaystyle{ {m\choose n} }[/math] | [math]\displaystyle{ \left({m\choose n-m}\right) }[/math] |
distinguishable | indistinguishable | [math]\displaystyle{ \sum_{k=1}^m S(n,k) }[/math] | [math]\displaystyle{ \begin{cases}1 & \mbox{if }n\le m\\ 0& \mbox{if }n\gt m\end{cases} }[/math] | [math]\displaystyle{ S(n,m)\, }[/math] |
indistinguishable | indistinguishable | [math]\displaystyle{ \sum_{k=1}^m p_k(n) }[/math] | [math]\displaystyle{ \begin{cases}1 & \mbox{if }n\le m\\ 0& \mbox{if }n\gt m\end{cases} }[/math] | [math]\displaystyle{ p_m(n)\, }[/math] |