高级算法 (Fall 2017)/Finite Field Basics
Field
Let [math]\displaystyle{ S }[/math] be a set, closed under two binary operations [math]\displaystyle{ + }[/math] (addition) and [math]\displaystyle{ \cdot }[/math] (multiplication). It gives us the following algebraic structures if the corresponding set of axioms are satisfied.
Structures | Axioms | Operations | ||||||
---|---|---|---|---|---|---|---|---|
field | commutative ring |
ring | abelian group |
group | monoid | semigroup | 1. Addition is associative: [math]\displaystyle{ \forall x,y,z\in S, (x+y)+z= x+(y+z). }[/math] | [math]\displaystyle{ + }[/math] |
2. Existence of additive identity 0: [math]\displaystyle{ \forall x\in S, x+0= 0+x=x. }[/math] | ||||||||
3. Everyone has an additive inverse: [math]\displaystyle{ \forall x\in S, \exists -x\in S, \text{ s.t. } x+(-x)= (-x)+x=0. }[/math] | ||||||||
4. Addition is commutative: [math]\displaystyle{ \forall x,y\in S, x+y= y+x. }[/math] | ||||||||
5. Multiplication distributes over addition: [math]\displaystyle{ \forall x,y,z\in S, x\cdot(y+z)= x\cdot y+x\cdot z }[/math] and [math]\displaystyle{ (y+z)\cdot x= y\cdot x+z\cdot x. }[/math] | [math]\displaystyle{ +,\cdot }[/math] | |||||||
6. Multiplication is associative: [math]\displaystyle{ \forall x,y,z\in S, (x\cdot y)\cdot z= x\cdot (y\cdot z). }[/math] | [math]\displaystyle{ \cdot }[/math] | |||||||
7. Existence of multiplicative identity 1: [math]\displaystyle{ \forall x\in S, x\cdot 1= 1\cdot x=x. }[/math] | ||||||||
8. Multiplication is commutative: [math]\displaystyle{ \forall x,y\in S, x\cdot y= y\cdot x. }[/math] | ||||||||
9. Every non-zero element has a multiplicative inverse: [math]\displaystyle{ \forall x\in S\setminus\{0\}, \exists x^{-1}\in S, \text{ s.t. } x\cdot x^{-1}= x^{-1}\cdot x=1. }[/math] |
The semigroup, monoid, group and abelian group are given by [math]\displaystyle{ (S,+) }[/math], and the ring, commutative ring, and field are given by [math]\displaystyle{ (S,+,\cdot) }[/math].
Examples:
- Infinite fields: [math]\displaystyle{ \mathbb{Q} }[/math], [math]\displaystyle{ \mathbb{R} }[/math], [math]\displaystyle{ \mathbb{C} }[/math] are fields. The integer set [math]\displaystyle{ \mathbb{Z} }[/math] is a commutative ring but is not a field.
- Finite fields: Finite fields are called Galois fields. The number of elements of a finite field is called its order. A finite field of order [math]\displaystyle{ q }[/math], is denoted as [math]\displaystyle{ \mathsf{GF}(q) }[/math].
- Prime field [math]\displaystyle{ {\mathbb{Z}_p} }[/math]: For any integer [math]\displaystyle{ n\gt 1 }[/math], [math]\displaystyle{ \mathbb{Z}_n=\{0,1,\ldots,n-1\} }[/math] under modulo-[math]\displaystyle{ p }[/math] addition [math]\displaystyle{ + }[/math] and multiplication [math]\displaystyle{ \cdot }[/math] forms a commutative ring. It is called quotient ring, and is sometimes denoted as [math]\displaystyle{ \mathbb{Z}/n\mathbb{Z} }[/math]. In particular, for prime [math]\displaystyle{ p }[/math], [math]\displaystyle{ \mathbb{Z}_p }[/math] is a field. This can be verified by Fermat's little theorem.
- Boolean arithmetics [math]\displaystyle{ \mathsf{GF}(2) }[/math]: The finite field of order 2 [math]\displaystyle{ \mathsf{GF}(2) }[/math] contains only two elements 0 and 1, with bit-wise XOR as addition and bit-wise AND as multiplication. [math]\displaystyle{ \mathsf{GF}(2^n) }[/math]
- Other examples: There are other examples of finite fields, for instance [math]\displaystyle{ \{a+bi\mid a,b\in \mathbb{Z}_3\} }[/math] where [math]\displaystyle{ I=\sqrt{-1} }[/math]. This field is isomorphic to [math]\displaystyle{ \mathsf{GF}(9) }[/math]. In fact, the following theorem holds for finite fields of given order.
Theorem - A finite field of order [math]\displaystyle{ q }[/math] exists if and only if [math]\displaystyle{ q }[/math] is a prime power [math]\displaystyle{ p^k }[/math] (where [math]\displaystyle{ p }[/math] is a prime number and [math]\displaystyle{ k }[/math] is a positive integer). Moreover, all fields of a given order are isomorphic.