Randomized Algorithms (Spring 2010)/Martingales

From TCS Wiki
Revision as of 06:11, 7 April 2010 by imported>WikiSysop (→‎For independent random variables)
Jump to navigation Jump to search

Martingales

Review of conditional probability

Martingales and Azuma's Inequality

Definition (martingale):
A sequence of random variables [math]\displaystyle{ X_0,X_1,\ldots }[/math] is a martingale if for all [math]\displaystyle{ i\gt 0 }[/math],
[math]\displaystyle{ \begin{align} \mathbf{E}[X_{i}\mid X_0,\ldots,X_{i-1}]=X_{i-1}. \end{align} }[/math]


Azuma's Inequality:
Let [math]\displaystyle{ X_0,X_1,\ldots }[/math] be a martingale such that, for all [math]\displaystyle{ k\ge 1 }[/math],
[math]\displaystyle{ |X_{k}-X_{k-1}|\le c_k, }[/math]
Then
[math]\displaystyle{ \begin{align} \Pr\left[|X_n-X_0|\ge t\right]\le 2\exp\left(-\frac{t^2}{2\sum_{k=1}^nc_k^2}\right). \end{align} }[/math]


Corollary:
Let [math]\displaystyle{ X_0,X_1,\ldots }[/math] be a martingale such that, for all [math]\displaystyle{ k\ge 1 }[/math],
[math]\displaystyle{ |X_{k}-X_{k-1}|\le c, }[/math]
Then
[math]\displaystyle{ \begin{align} \Pr\left[|X_n-X_0|\ge ct\sqrt{n}\right]\le 2 e^{-t^2/2}. \end{align} }[/math]

Generalizations

Definition (martingale, general version):
A sequence of random variables [math]\displaystyle{ Y_0,Y_1,\ldots }[/math] is a martingale with respect to the sequence [math]\displaystyle{ X_0,X_1,\ldots }[/math] if, for all [math]\displaystyle{ i\ge 0 }[/math], the following conditions hold:
  • [math]\displaystyle{ Y_i }[/math] is a function of [math]\displaystyle{ X_0,X_1,\ldots,X_i }[/math];
  • [math]\displaystyle{ \begin{align} \mathbf{E}[Y_{i+1}\mid X_0,\ldots,X_{i}]=Y_{i}. \end{align} }[/math]

Therefore, a sequence [math]\displaystyle{ X_0,X_1,\ldots }[/math] is a martingale if it is a martingale with respect to itself.

Azuma's Inequality (general version):
Let [math]\displaystyle{ Y_0,Y_1,\ldots }[/math] be a martingale with respect to the sequence [math]\displaystyle{ X_0,X_1,\ldots }[/math] such that, for all [math]\displaystyle{ k\ge 1 }[/math],
[math]\displaystyle{ |Y_{k}-Y_{k-1}|\le c_k, }[/math]
Then
[math]\displaystyle{ \begin{align} \Pr\left[|Y_n-Y_0|\ge t\right]\le 2\exp\left(-\frac{t^2}{2\sum_{k=1}^nc_k^2}\right). \end{align} }[/math]


Definition (The Doob sequence):
The Doob sequence of a function [math]\displaystyle{ f }[/math] with respect to a sequence of random variables [math]\displaystyle{ X_1,\ldots,X_n }[/math] is defined by
[math]\displaystyle{ Y_i=\mathbf{E}[f(X_1,\ldots,X_n)\mid X_1,\ldots,X_{i}], \quad 0\le i\le n. }[/math]
In particular, [math]\displaystyle{ Y_0=\mathbf{E}[f(X_1,\ldots,X_n)] }[/math] and [math]\displaystyle{ Y_n=f(X_1,\ldots,X_n) }[/math].

The Method of Bounded Differences

For arbitrary random variables

Theorem (The method of averaged bounded differences):
Let [math]\displaystyle{ \boldsymbol{X}=(X_1,\ldots, X_n) }[/math] be arbitrary random variables and let [math]\displaystyle{ f }[/math] be a function of [math]\displaystyle{ X_0,X_1,\ldots, X_n }[/math] satisfying that, for all [math]\displaystyle{ 1\le i\le n }[/math],
[math]\displaystyle{ |\mathbf{E}[f(\boldsymbol{X})\mid X_1,\ldots,X_i]-\mathbf{E}[f(\boldsymbol{X})\mid X_1,\ldots,X_{i-1}]|\le c_i, }[/math]
Then
[math]\displaystyle{ \begin{align} \Pr\left[|f(\boldsymbol{X})-\mathbf{E}[f(\boldsymbol{X})]|\ge t\right]\le 2\exp\left(-\frac{t^2}{2\sum_{i=1}^nc_i^2}\right). \end{align} }[/math]

Define the Doob Martingale sequence [math]\displaystyle{ Y_0,Y_1,\ldots,Y_n }[/math] by setting [math]\displaystyle{ Y_0=\mathbf{E}[f(X_1,\ldots,X_n)] }[/math] and, for [math]\displaystyle{ 1\le i\le n }[/math], [math]\displaystyle{ Y_i=\mathbf{E}[f(X_1,\ldots,X_n)\mid X_1,\ldots,X_i] }[/math]. Then the above theorem is a restatement of the Azuma's inequality holding for [math]\displaystyle{ Y_0,Y_1,\ldots,Y_n }[/math].

For independent random variables

Definition (Lipschitz condition):
A function [math]\displaystyle{ f(x_1,\ldots,x_n) }[/math] satisfies the Lipschitz condition, if for any [math]\displaystyle{ x_1,\ldots,x_n }[/math] and any [math]\displaystyle{ y_i }[/math],
[math]\displaystyle{ \begin{align} |f(x_1,\ldots,x_{i-1},x_i,x_{i+1},\ldots,x_n)-f(x_1,\ldots,x_{i-1},y_i,x_{i+1},\ldots,x_n)|\le 1. \end{align} }[/math]

In other words, the function satisfies the Lipschitz condition if an arbitrary change in the value of any one argument does not change the value of the function by more than 1.

Definition (Lipschitz condition, general version):
A function [math]\displaystyle{ f(x_1,\ldots,x_n) }[/math] satisfies the Lipschitz condition with constants [math]\displaystyle{ c_i }[/math], [math]\displaystyle{ 1\le i\le n }[/math], if for any [math]\displaystyle{ x_1,\ldots,x_n }[/math] and any [math]\displaystyle{ y_i }[/math],
[math]\displaystyle{ \begin{align} |f(x_1,\ldots,x_{i-1},x_i,x_{i+1},\ldots,x_n)-f(x_1,\ldots,x_{i-1},y_i,x_{i+1},\ldots,x_n)|\le c_i. \end{align} }[/math]


Corollary (Method of bounded differences):
Let [math]\displaystyle{ \boldsymbol{X}=(X_1,\ldots, X_n) }[/math] be [math]\displaystyle{ n }[/math] independent random variables and let [math]\displaystyle{ f }[/math] be a function satisfying the Lipschitz condition with constants [math]\displaystyle{ c_i }[/math], [math]\displaystyle{ 1\le i\le n }[/math].
Then
[math]\displaystyle{ \begin{align} \Pr\left[|f(\boldsymbol{X})-\mathbf{E}[f(\boldsymbol{X})]|\ge t\right]\le 2\exp\left(-\frac{t^2}{2\sum_{i=1}^nc_i^2}\right). \end{align} }[/math]

Applications