Combinatorics (Fall 2010)/Ramsey theory
Ramsey's Theorem
Ramsey's theorem for graph
Ramsey's Theorem - Let [math]\displaystyle{ k,\ell }[/math] be positive integers. Then there exists an integer [math]\displaystyle{ R(k,\ell) }[/math] satisfying:
- If [math]\displaystyle{ n\ge R(k,\ell) }[/math], for any coloring of edges of [math]\displaystyle{ K_n }[/math] with two colors red and blue, there exists a red [math]\displaystyle{ K_k }[/math] or a blue [math]\displaystyle{ K_\ell }[/math].
Proof. We show that [math]\displaystyle{ R(k,\ell) }[/math] is finite by induction on [math]\displaystyle{ k+\ell }[/math]. For the base case, it is easy to verify that
- [math]\displaystyle{ R(k,1)=R(1,\ell)=1 }[/math].
For general [math]\displaystyle{ k }[/math] and [math]\displaystyle{ \ell }[/math], we will show that
- [math]\displaystyle{ R(k,\ell)\le R(k,\ell-1)+R(k-1,\ell) }[/math].
Suppose we have a two coloring of [math]\displaystyle{ K_n }[/math], where [math]\displaystyle{ n=R(k,\ell-1)+R(k-1,\ell) }[/math]. Take an arbitrary vertex [math]\displaystyle{ v }[/math], and split [math]\displaystyle{ V\setminus\{v\} }[/math] into two subsets [math]\displaystyle{ S }[/math] and [math]\displaystyle{ T }[/math], where
- [math]\displaystyle{ \begin{align} S&=\{u\in V\setminus\{v\}\mid uv \text{ is blue }\}\\ T&=\{u\in V\setminus\{v\}\mid uv \text{ is red }\} \end{align} }[/math]
Since
- [math]\displaystyle{ |S|+|T|+1=n=R(k,\ell-1)+R(k-1,\ell) }[/math],
we have either [math]\displaystyle{ |S|\ge R(k,\ell-1) }[/math] or [math]\displaystyle{ |T|\ge R(k-1,\ell) }[/math]. By symmetry, suppose [math]\displaystyle{ |S|\ge R(k,\ell-1) }[/math]. By induction hypothesis, the complete subgraph defined on [math]\displaystyle{ S }[/math] has either a red [math]\displaystyle{ K_k }[/math], in which case we are done; or a blue [math]\displaystyle{ K_{\ell-1} }[/math], in which case the complete subgraph defined on [math]\displaystyle{ S\cup{v} }[/math] must have a blue [math]\displaystyle{ K_\ell }[/math] since all edges from [math]\displaystyle{ v }[/math] to vertices in [math]\displaystyle{ S }[/math] are blue.
- [math]\displaystyle{ \square }[/math]
Ramsey's Theorem (graph, multicolor) - Let [math]\displaystyle{ r, k_1,k_2,\ldots,k_r }[/math] be positive integers. Then there exists an integer [math]\displaystyle{ R(r;k_1,k_2,\ldots,k_r) }[/math] satisfying:
- For any [math]\displaystyle{ r }[/math]-coloring of a complete graph of [math]\displaystyle{ n\ge R(r;k_1,k_2,\ldots,k_r) }[/math] vertices, there exists a monochromatic [math]\displaystyle{ k_i }[/math]-clique with the [math]\displaystyle{ i }[/math]th color for some [math]\displaystyle{ i\in\{1,2,\ldots,r\} }[/math].
Lemma (the "mixing color" trick) - [math]\displaystyle{ R(r;k_1,k_2,\ldots,k_r)\le R(r-1;k_1,k_2,\ldots,k_{r-2},R(2;k_{r-1},k_r)) }[/math]
Proof. We transfer the [math]\displaystyle{ r }[/math]-coloring to [math]\displaystyle{ (r-1) }[/math]-coloring by identifying the [math]\displaystyle{ (r-1) }[/math]th and the [math]\displaystyle{ r }[/math]th colors.
If [math]\displaystyle{ n\ge R(r-1;k_1,k_2,\ldots,k_{r-2},R(2;k_{r-1},k_r)) }[/math], then for any [math]\displaystyle{ r }[/math]-coloring of [math]\displaystyle{ K_n }[/math], there either exist an [math]\displaystyle{ i\in\{1,2,\ldots,r-2\} }[/math] and a [math]\displaystyle{ k_i }[/math]-clique which is monochromatically colored with the [math]\displaystyle{ i }[/math]th color; or exists clique of [math]\displaystyle{ R(2;k_{r-1},k_r) }[/math] vertices which is monochromatically colored with the mixed color of the original [math]\displaystyle{ (r-1) }[/math]th and [math]\displaystyle{ r }[/math]th colors, which again implies that there exists either a [math]\displaystyle{ k }[/math]-clique which is monochromatically colored with the original [math]\displaystyle{ (r-1) }[/math]th color, or a [math]\displaystyle{ \ell }[/math]-clique which is monochromatically colored with the original [math]\displaystyle{ r }[/math]th color. This implies the recursion.
- [math]\displaystyle{ \square }[/math]
Ramsey number
The smallest number [math]\displaystyle{ R(k,\ell) }[/math] satisfying the condition in the Ramsey theory is called the Ramsey number.
Alternatively, we can define [math]\displaystyle{ R(k,\ell) }[/math] as the smallest [math]\displaystyle{ N }[/math] such that if [math]\displaystyle{ n\ge N }[/math], for any 2-coloring of [math]\displaystyle{ K_n }[/math] in red and blue, there is either a red [math]\displaystyle{ K_k }[/math] or a blue [math]\displaystyle{ K_\ell }[/math]. The Ramsey theorem is stated as:
- "[math]\displaystyle{ R(k,\ell) }[/math] is finite for any positive integers [math]\displaystyle{ k }[/math] and [math]\displaystyle{ \ell }[/math]."
The core of the inductive proof of the Ramsey theorem is the following recursion
- [math]\displaystyle{ \begin{align} R(k,1) &=R(1,\ell)=1\\ R(k,\ell) &\le R(k,\ell-1)+R(k-1,\ell). \end{align} }[/math]
From this recursion, we can deduce an upper bound for the Ramsey number.
Theorem - [math]\displaystyle{ R(k,\ell)\le{k+\ell-2\choose k-1} }[/math].
Proof. It is easy to verify the bound by induction.
- [math]\displaystyle{ \square }[/math]
Lovász local lemma
Definition - Let [math]\displaystyle{ A_1,A_2,\ldots,A_n }[/math] be a set of events. A graph [math]\displaystyle{ D=(V,E) }[/math] on the set of vertices [math]\displaystyle{ V=\{1,2,\ldots,n\} }[/math] is called a dependency graph for the events [math]\displaystyle{ A_1,\ldots,A_n }[/math] if for each [math]\displaystyle{ i }[/math], [math]\displaystyle{ 1\le i\le n }[/math], the event [math]\displaystyle{ A_i }[/math] is mutually independent of all the events [math]\displaystyle{ \{A_j\mid (i,j)\not\in E\} }[/math].
- Example
- Let [math]\displaystyle{ X_1,X_2,\ldots,X_m }[/math] be a set of mutually independent random variables. Each event [math]\displaystyle{ A_i }[/math] is a predicate defined on a number of variables among [math]\displaystyle{ X_1,X_2,\ldots,X_m }[/math]. Let [math]\displaystyle{ v(A_i) }[/math] be the unique smallest set of variables which determine [math]\displaystyle{ A_i }[/math]. The dependency graph [math]\displaystyle{ D=(V,E) }[/math] is defined by
- [math]\displaystyle{ (i,j)\in E }[/math] iff [math]\displaystyle{ v(A_i)\cap v(A_j)\neq \emptyset }[/math].
The following lemma, known as the Lovász local lemma, first proved by Erdős and Lovász in 1975, is an extremely powerful tool, as it supplies a way for dealing with rare events.
Lovász Local Lemma (symmetric case) - Let [math]\displaystyle{ A_1,A_2,\ldots,A_n }[/math] be a set of events, and assume that the following hold:
- for all [math]\displaystyle{ 1\le i\le n }[/math], [math]\displaystyle{ \Pr[A_i]\le p }[/math];
- the maximum degree of the dependency graph for the events [math]\displaystyle{ A_1,A_2,\ldots,A_n }[/math] is [math]\displaystyle{ d }[/math], and
- [math]\displaystyle{ ep(d+1)\le 1 }[/math].
- Then
- [math]\displaystyle{ \Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]\gt 0 }[/math].
- Let [math]\displaystyle{ A_1,A_2,\ldots,A_n }[/math] be a set of events, and assume that the following hold:
We will prove a general version of the local lemma, where the events [math]\displaystyle{ A_i }[/math] are not symmetric. This generalization is due to Spencer.
Lovász Local Lemma (general case) - Let [math]\displaystyle{ D=(V,E) }[/math] be the dependency graph of events [math]\displaystyle{ A_1,A_2,\ldots,A_n }[/math]. Suppose there exist real numbers [math]\displaystyle{ x_1,x_2,\ldots, x_n }[/math] such that [math]\displaystyle{ 0\le x_i\lt 1 }[/math] and for all [math]\displaystyle{ 1\le i\le n }[/math],
- [math]\displaystyle{ \Pr[A_i]\le x_i\prod_{(i,j)\in E}(1-x_j) }[/math].
- Then
- [math]\displaystyle{ \Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]\ge\prod_{i=1}^n(1-x_i) }[/math].
- Let [math]\displaystyle{ D=(V,E) }[/math] be the dependency graph of events [math]\displaystyle{ A_1,A_2,\ldots,A_n }[/math]. Suppose there exist real numbers [math]\displaystyle{ x_1,x_2,\ldots, x_n }[/math] such that [math]\displaystyle{ 0\le x_i\lt 1 }[/math] and for all [math]\displaystyle{ 1\le i\le n }[/math],
Proof. We can use the following probability identity to compute the probability of the intersection of events:
Lemma 1 - [math]\displaystyle{ \Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]=\prod_{i=1}^n\Pr\left[\overline{A_i}\mid \bigwedge_{j=1}^{i-1}\overline{A_{j}}\right] }[/math].
Proof. By definition of conditional probability,
- [math]\displaystyle{ \Pr\left[\overline{A_n}\mid\bigwedge_{i=1}^{n-1}\overline{A_{i}}\right] =\frac{\Pr\left[\bigwedge_{i=1}^n\overline{A_{i}}\right]} {\Pr\left[\bigwedge_{i=1}^{n-1}\overline{A_{i}}\right]} }[/math],
so we have
- [math]\displaystyle{ \Pr\left[\bigwedge_{i=1}^n\overline{A_{i}}\right]=\Pr\left[\bigwedge_{i=1}^{n-1}\overline{A_{i}}\right]\Pr\left[\overline{A_n}\mid\bigwedge_{i=1}^{n-1}\overline{A_{i}}\right] }[/math].
The lemma is proved by recursively applying this equation.
- [math]\displaystyle{ \square }[/math]
Next we prove by induction on [math]\displaystyle{ m }[/math] that for any set of [math]\displaystyle{ m }[/math] events [math]\displaystyle{ i_1,\ldots,i_m }[/math],
- [math]\displaystyle{ \Pr\left[A_{i_1}\mid \bigwedge_{j=2}^m\overline{A_{i_j}}\right]\le x_{i_1} }[/math].
The local lemma is a direct consequence of this by applying Lemma 1.
For [math]\displaystyle{ m=1 }[/math], this is obvious. For general [math]\displaystyle{ m }[/math], let [math]\displaystyle{ i_2,\ldots,i_k }[/math] be the set of vertices adjacent to [math]\displaystyle{ i_1 }[/math] in the dependency graph. Clearly [math]\displaystyle{ k-1\le d }[/math]. And it holds that
- [math]\displaystyle{ \Pr\left[A_{i_1}\mid \bigwedge_{j=2}^m\overline{A_{i_j}}\right] =\frac{\Pr\left[ A_i\wedge \bigwedge_{j=2}^k\overline{A_{i_j}}\mid \bigwedge_{j=k+1}^m\overline{A_{i_j}}\right]} {\Pr\left[\bigwedge_{j=2}^k\overline{A_{i_j}}\mid \bigwedge_{j=k+1}^m\overline{A_{i_j}}\right]} }[/math],
which is due to the basic conditional probability identity
- [math]\displaystyle{ \Pr[A\mid BC]=\frac{\Pr[AB\mid C]}{\Pr[B\mid C]} }[/math].
We bound the numerator
- [math]\displaystyle{ \begin{align} \Pr\left[ A_{i_1}\wedge \bigwedge_{j=2}^k\overline{A_{i_j}}\mid \bigwedge_{j=k+1}^m\overline{A_{i_j}}\right] &\le\Pr\left[ A_{i_1}\mid \bigwedge_{j=k+1}^m\overline{A_{i_j}}\right]\\ &=\Pr[A_{i_1}]\\ &\le x_{i_1}\prod_{(i_1,j)\in E}(1-x_j). \end{align} }[/math]
The equation is due to the independence between [math]\displaystyle{ A_{i_1} }[/math] and [math]\displaystyle{ A_{i_k+1},\ldots,A_{i_m} }[/math].
The denominator can be expanded using Lemma 1 as
- [math]\displaystyle{ \Pr\left[\bigwedge_{j=2}^k\overline{A_{i_j}}\mid \bigwedge_{j=k+1}^m\overline{A_{i_j}}\right] =\prod_{j=2}^k\Pr\left[\overline{A_{i_j}}\mid \bigwedge_{\ell=j+1}^m\overline{A_{i_\ell}}\right] }[/math]
which by the induction hypothesis, is at least
- [math]\displaystyle{ \prod_{j=2}^k(1-x_{i_j})=\prod_{\{i_1,i_j\}\in E}(1-x_j) }[/math]
where [math]\displaystyle{ E }[/math] is the edge set of the dependency graph.
Therefore,
- [math]\displaystyle{ \Pr\left[A_{i_1}\mid \bigwedge_{j=2}^m\overline{A_{i_j}}\right] \le\frac{x_{i_1}\prod_{(i_1,j)\in E}(1-x_j)}{\prod_{\{i_1,i_j\}\in E}(1-x_j)}\le x_{i_1}. }[/math]
Applying Lemma 1,
- [math]\displaystyle{ \begin{align} \Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right] &=\prod_{i=1}^n\Pr\left[\overline{A_i}\mid \bigwedge_{j=1}^{i-1}\overline{A_{j}}\right]\\ &=\prod_{i=1}^n\left(1-\Pr\left[A_i\mid \bigwedge_{j=1}^{i-1}\overline{A_{j}}\right]\right)\\ &\ge\prod_{i=1}^n\left(1-x_i\right). \end{align} }[/math]
- [math]\displaystyle{ \square }[/math]
To prove the symmetric case. Let [math]\displaystyle{ x_i=\frac{1}{d+1} }[/math] for all [math]\displaystyle{ i=1,2,\ldots,n }[/math]. Note that [math]\displaystyle{ \left(1-\frac{1}{d+1}\right)^d\gt \frac{1}{\mathrm{e}} }[/math].
If the following conditions are satisfied:
- for all [math]\displaystyle{ 1\le i\le n }[/math], [math]\displaystyle{ \Pr[A_i]\le p }[/math];
- [math]\displaystyle{ ep(d+1)\le 1 }[/math];
then for all [math]\displaystyle{ 1\le i\le n }[/math],
- [math]\displaystyle{ \Pr[A_i]\le p\le\frac{1}{e(d+1)}\lt \frac{1}{d+1}\left(1-\frac{1}{d+1}\right)^d\le x_i\prod_{(i,j)\in E}(1-x_j) }[/math].
Due to the local lemma for general cases, this implies that
- [math]\displaystyle{ \Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]\ge\prod_{i=1}^n(1-x_i)=\left(1-\frac{1}{d+1}\right)^n\gt 0 }[/math].
This gives the symmetric version of local lemma.
Ramsey number (continued)
We can use the local lemma to prove a lower bound for the diagonal Ramsey number.
Theorem - [math]\displaystyle{ R(k,k)\ge Ck2^{k/2} }[/math] for some constant [math]\displaystyle{ C\gt 0 }[/math].
Proof. To prove a lower bound [math]\displaystyle{ R(k,k)\gt n }[/math], it is sufficient to show that there exists a 2-coloring of [math]\displaystyle{ K_n }[/math] without a monochromatic [math]\displaystyle{ K_k }[/math]. We prove this by the probabilistic method.
Pick a random 2-coloring of [math]\displaystyle{ K_n }[/math] by coloring each edge uniformly and independently with one of the two colors. For any set [math]\displaystyle{ S }[/math] of [math]\displaystyle{ k }[/math] vertices, let [math]\displaystyle{ A_S }[/math] denote the event that [math]\displaystyle{ S }[/math] forms a monochromatic [math]\displaystyle{ K_k }[/math]. It is easy to see that [math]\displaystyle{ \Pr[A_s]=2^{1-{k\choose 2}}=p }[/math].
For any [math]\displaystyle{ k }[/math]-subset [math]\displaystyle{ T }[/math] of vertices, [math]\displaystyle{ A_S }[/math] and [math]\displaystyle{ A_T }[/math] are dependent if and only if [math]\displaystyle{ |S\cap T|\ge 2 }[/math]. For each [math]\displaystyle{ S }[/math], the number of [math]\displaystyle{ T }[/math] that [math]\displaystyle{ |S\cap T|\ge 2 }[/math] is at most [math]\displaystyle{ {k\choose 2}{n\choose k-2} }[/math], so the max degree of the dependency graph is [math]\displaystyle{ d\le{k\choose 2}{n\choose k-2} }[/math].
Take [math]\displaystyle{ n=Ck2^{k/2} }[/math] for some appropriate constant [math]\displaystyle{ C\gt 0 }[/math].
- [math]\displaystyle{ \begin{align} \mathrm{e}p(d+1) &\le \mathrm{e}2^{1-{k\choose 2}}\left({k\choose 2}{n\choose k-2}+1\right)\\ &\le 2^{3-{k\choose 2}}{k\choose 2}{n\choose k-2}\\ &\le 1 \end{align} }[/math]
Applying the local lemma, the probability that there is no monochromatic [math]\displaystyle{ K_k }[/math] is
- [math]\displaystyle{ \Pr\left[\bigwedge_{S\in{[n]\choose k}}\overline{A_S}\right]\gt 0 }[/math].
Therefore, there exists a 2-coloring of [math]\displaystyle{ K_n }[/math] which has no monochromatic [math]\displaystyle{ K_k }[/math], which means
- [math]\displaystyle{ R(k,k)\gt n=Ck2^{k/2} }[/math].
- [math]\displaystyle{ \square }[/math]
Theorem - [math]\displaystyle{ \Omega\left(k2^{k/2}\right)\le R(k,k)\le{2k-2\choose k-1}=O\left(k^{-1/2}4^{k}\right) }[/math].
[math]\displaystyle{ k }[/math],[math]\displaystyle{ l }[/math] | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
3 | 1 | 3 | 6 | 9 | 14 | 18 | 23 | 28 | 36 | 40–43 |
4 | 1 | 4 | 9 | 18 | 25 | 35–41 | 49–61 | 56–84 | 73–115 | 92–149 |
5 | 1 | 5 | 14 | 25 | 43–49 | 58–87 | 80–143 | 101–216 | 125–316 | 143–442 |
6 | 1 | 6 | 18 | 35–41 | 58–87 | 102–165 | 113–298 | 127–495 | 169–780 | 179–1171 |
7 | 1 | 7 | 23 | 49–61 | 80–143 | 113–298 | 205–540 | 216–1031 | 233–1713 | 289–2826 |
8 | 1 | 8 | 28 | 56–84 | 101–216 | 127–495 | 216–1031 | 282–1870 | 317–3583 | 317-6090 |
9 | 1 | 9 | 36 | 73–115 | 125–316 | 169–780 | 233–1713 | 317–3583 | 565–6588 | 580–12677 |
10 | 1 | 10 | 40–43 | 92–149 | 143–442 | 179–1171 | 289–2826 | 317-6090 | 580–12677 | 798–23556 |
Ramsey's theorem for hypergraph
Ramsey's Theorem (hypergraph, multicolor) - Let [math]\displaystyle{ r, t, k_1,k_2,\ldots,k_r }[/math] be positive integers. Then there exists an integer [math]\displaystyle{ R_t(r;k_1,k_2,\ldots,k_r) }[/math] satisfying:
- For any [math]\displaystyle{ r }[/math]-coloring of [math]\displaystyle{ {[n]\choose t} }[/math] with [math]\displaystyle{ n\ge R_t(r;k_1,k_2,\ldots,k_r) }[/math], there exist an [math]\displaystyle{ i\in\{1,2,\ldots,r\} }[/math] and a subset [math]\displaystyle{ X\subseteq [n] }[/math] with [math]\displaystyle{ |X|\ge k_i }[/math] such that all members of [math]\displaystyle{ {X\choose t} }[/math] are colored with the [math]\displaystyle{ i }[/math]th color.
[math]\displaystyle{ n\rightarrow(k_1,k_2,\ldots,k_r)^t }[/math]
Lemma (the "mixing color" trick) - [math]\displaystyle{ R_t(r;k_1,k_2,\ldots,k_r)\le R_t(r-1;k_1,k_2,\ldots,k_{r-2},R_t(2;k_{r-1},k_r)) }[/math]
It is then sufficient to prove the Ramsey's theorem for the two-coloring of a hypergraph, that is, to prove [math]\displaystyle{ R_t(k,\ell)=R_t(2;k,\ell) }[/math] is finite.
Lemma - [math]\displaystyle{ R_t(k,\ell)\le R_{t-1}(R_t(k-1,\ell),R_t(k,\ell-1))+1 }[/math]
Proof. Let [math]\displaystyle{ n=R_{t-1}(R_t(k-1,\ell),R_t(k,\ell-1))+1 }[/math]. Denote [math]\displaystyle{ [n]=\{1,2,\ldots,n\} }[/math].
Let [math]\displaystyle{ f:{[n]\choose t}\rightarrow\{{\color{red}\text{red}},{\color{blue}\text{blue}}\} }[/math] be an arbitrary 2-coloring of [math]\displaystyle{ {[n]\choose t} }[/math]. It is then sufficient to show that there either exists an [math]\displaystyle{ X\subseteq[n] }[/math] with [math]\displaystyle{ |X|=k }[/math] such that all members of [math]\displaystyle{ {X\choose t} }[/math] are colored red by [math]\displaystyle{ f }[/math]; or exists an [math]\displaystyle{ X\subseteq[n] }[/math] with [math]\displaystyle{ |X|=\ell }[/math] such that all members of [math]\displaystyle{ {X\choose t} }[/math] are colored blue by [math]\displaystyle{ f }[/math].
We remove [math]\displaystyle{ n }[/math] from [math]\displaystyle{ [n] }[/math] and define a new coloring [math]\displaystyle{ f' }[/math] of [math]\displaystyle{ {[n-1]\choose t-1} }[/math] by
- [math]\displaystyle{ f'(A)=f(A\cup\{n\}) }[/math] for any [math]\displaystyle{ A\in{[n-1]\choose t-1} }[/math].
By the choice of [math]\displaystyle{ n }[/math] and by symmetry, there exists a subset [math]\displaystyle{ S\subseteq[n-1] }[/math] with [math]\displaystyle{ |X|=R_t(k-1,\ell) }[/math] such that all members of [math]\displaystyle{ {S\choose t-1} }[/math] are colored with red by [math]\displaystyle{ f' }[/math]. Then there either exists an [math]\displaystyle{ X\subseteq S }[/math] with [math]\displaystyle{ |X|=\ell }[/math] such that [math]\displaystyle{ {X\choose t} }[/math] is colored all blue by [math]\displaystyle{ f }[/math], in which case we are done; or exists an [math]\displaystyle{ X\subseteq S }[/math] with [math]\displaystyle{ |X|=k-1 }[/math] such that [math]\displaystyle{ {X\choose t} }[/math] is colored all red by [math]\displaystyle{ f }[/math]. Next we prove that in the later case [math]\displaystyle{ {X\cup{n}\choose t} }[/math] is all red, which will close our proof. Since all [math]\displaystyle{ A\in{S\choose t-1} }[/math] are colored with red by [math]\displaystyle{ f' }[/math], then by our definition of [math]\displaystyle{ f' }[/math], [math]\displaystyle{ f(A\cup\{n\})={\color{red}\text{red}} }[/math] for all [math]\displaystyle{ A\in {X\choose t-1}\subseteq{S\choose t-1} }[/math]. Recalling that [math]\displaystyle{ {X\choose t} }[/math] is colored all red by [math]\displaystyle{ f }[/math], [math]\displaystyle{ {X\cup\{n\}\choose t} }[/math] is colored all red by [math]\displaystyle{ f }[/math] and we are done.
- [math]\displaystyle{ \square }[/math]
Applications of Ramsey Theorem
The "Happy Ending" problem
The happy ending problem - Any set of 5 points in the plane, no three on a line, has a subset of 4 points that form the vertices of a convex quadrilateral.
See the article [1] for the proof.
We say a set of points in the plane in general positions if no three of the points are on the same line.
Theorem (Erdős-Szekeres 1935) - For any positive integer [math]\displaystyle{ m\ge 3 }[/math], there is an [math]\displaystyle{ N(m) }[/math] such that any set of at least [math]\displaystyle{ N(m) }[/math] points in general position in the plane (i.e., no three of the points are on a line) contains [math]\displaystyle{ m }[/math] points that are the vertices of a convex [math]\displaystyle{ m }[/math]-gon.
Proof. Let [math]\displaystyle{ N(m)=R_3(m,m) }[/math]. For [math]\displaystyle{ n\ge N(m) }[/math], let [math]\displaystyle{ X }[/math] be an arbitrary set of [math]\displaystyle{ n }[/math] points in the plane, no three of which are on a line. Define a 2-coloring of the 3-subsets of points [math]\displaystyle{ f:{X\choose 3}\rightarrow\{0,1\} }[/math] as follows: for any [math]\displaystyle{ \{a,b,c\}\in{X\choose 3} }[/math], let [math]\displaystyle{ \triangle_{abc}\subset X }[/math] be the set of points covered by the triangle [math]\displaystyle{ abc }[/math]; and [math]\displaystyle{ f(\{a,b,c\})=|\triangle_{abc}|\bmod 2 }[/math], that is, [math]\displaystyle{ f(\{a,b,c\}) }[/math] indicates the oddness of the number of points covered by the triangle [math]\displaystyle{ abc }[/math].
Since [math]\displaystyle{ |X|\ge R_3(m,m) }[/math], there exists a [math]\displaystyle{ Y\subseteq X }[/math] such that [math]\displaystyle{ |Y|=m }[/math] and all members of [math]\displaystyle{ {Y\choose 3} }[/math] are colored with the same value by [math]\displaystyle{ f }[/math].
We claim that the [math]\displaystyle{ m }[/math] points in [math]\displaystyle{ Y }[/math] are the vertices of a convex [math]\displaystyle{ m }[/math]-gon. If otherwise, by the definition of convexity, there exist [math]\displaystyle{ \{a,b,c,d\}\subseteq Y }[/math] such that [math]\displaystyle{ d\in\triangle_{abc} }[/math]. Since no three points are in the same line,
- [math]\displaystyle{ \triangle_{abc}=\triangle_{abd}\cup\triangle_{acd}\cup\triangle_{bcd}\cup\{d\} }[/math],
where all unions are disjoint. Then [math]\displaystyle{ |\triangle_{abc}|=|\triangle_{abd}|+|\triangle_{acd}|+|\triangle_{bcd}|+1 }[/math], which implies that [math]\displaystyle{ f(\{a,b,c\}), f(\{a,b,d\}), f(\{a,c,d\}), f(\{b,c,d\})\, }[/math] cannot be equal, contradicting that all members of [math]\displaystyle{ {Y\choose 3} }[/math] have the same color.
- [math]\displaystyle{ \square }[/math]
Yao's lower bound on implicit data structures
Lemma - Let [math]\displaystyle{ n\ge 2 }[/math] and [math]\displaystyle{ N\ge 2n-1 }[/math]. Suppose the universe is [math]\displaystyle{ [N] }[/math] and the size of the data set is [math]\displaystyle{ n }[/math].
- If the data structure is a sorted table, any search algorithm requires at least [math]\displaystyle{ \lceil\log(n+1)\rceil }[/math] accesses to the data structure in the worst case.
Proof. We will show by an adversarial argument that [math]\displaystyle{ \lceil\log(n+1)\rceil }[/math] accesses are required to search for the key value [math]\displaystyle{ x=n }[/math] from the universe [math]\displaystyle{ [N]=\{1,2,\ldots,N\} }[/math]. The construction of the adversarial data set [math]\displaystyle{ S }[/math] is by induction on [math]\displaystyle{ n }[/math].
For [math]\displaystyle{ n=2 }[/math] and [math]\displaystyle{ N\ge 2n-1=3 }[/math] it is easy to see that two accesses are necessary.
Let [math]\displaystyle{ n_0\gt 2 }[/math]. Assume the induction hypothesis to be true for all [math]\displaystyle{ n\lt n_0 }[/math]; we will prove it for [math]\displaystyle{ n=n_0, m\ge 2n_0-1 }[/math] and [math]\displaystyle{ x=n_0 }[/math].
By symmetry, assume that the first access position [math]\displaystyle{ \ell }[/math] satisfies [math]\displaystyle{ \ell\le\lceil n_0/2\rceil }[/math]. The adversary answers [math]\displaystyle{ T[\ell]=\ell }[/math]. Then the key [math]\displaystyle{ x=n_0 }[/math] may be in any position [math]\displaystyle{ i }[/math], where [math]\displaystyle{ \lceil n_0/2\rceil+1\le i\le n_0 }[/math]. In fact, [math]\displaystyle{ T[\lceil n_0/2\rceil+1] }[/math] through [math]\displaystyle{ T[n_0] }[/math] is a sorted table of size [math]\displaystyle{ n'=\lfloor n_0/2\rfloor }[/math] which may contain any [math]\displaystyle{ n' }[/math]-subset of [math]\displaystyle{ \{\lceil n_0/2\rceil+1,\lceil n_0/2\rceil+2,\ldots,N\} }[/math], and hence, in particular, any subset of the universe
- [math]\displaystyle{ U'=\{\lceil n_0/2\rceil+1,\lceil n_0/2\rceil+2,\ldots,N-\lceil n_0/2\rceil\} }[/math].
The size [math]\displaystyle{ N' }[/math] of [math]\displaystyle{ U' }[/math] satisfies
- [math]\displaystyle{ N'=N-2\lceil n_0/2\rceil\ge (2n_0-1)-2\lceil n_0/2\rceil\ge 2\lfloor n_0/2\rfloor-1=2n'-1 }[/math],
and the desired key [math]\displaystyle{ n_0 }[/math] has the relative value [math]\displaystyle{ x'=n_0-\lceil n_0/2\rceil=n' }[/math] in the universe [math]\displaystyle{ U' }[/math].
By the induction hypothesis, [math]\displaystyle{ \lceil\log(n'+1)\rceil }[/math] more accesses will be required. Hence the total number of accesses is at least
- [math]\displaystyle{ 1+\lceil\log(n'+1)\rceil=1+\lceil\log(\lfloor n_0/2\rfloor+1)\rceil\ge\lceil\log(n_0+1)\rceil }[/math].
- [math]\displaystyle{ \square }[/math]
Ramsey-like Theorems
Van der Waerden's Theorem
Theorem (Van der Waerden 1927) - For every choice of positive integers [math]\displaystyle{ r }[/math] and [math]\displaystyle{ t }[/math], there exists an integer [math]\displaystyle{ W(r,t) }[/math] such that for every [math]\displaystyle{ r }[/math]-coloring of [math]\displaystyle{ [n] }[/math] where [math]\displaystyle{ n\ge W(r,t) }[/math], there exists a monochromatic arithmetic progression of length [math]\displaystyle{ t }[/math].
Hales–Jewett Theorem
Theorem (Hales-Jewett 1963) - Let [math]\displaystyle{ A }[/math] be a finte alphabet of [math]\displaystyle{ t }[/math] symbols and let [math]\displaystyle{ r }[/math] be a positive integer. Then there exists an integer [math]\displaystyle{ \mathrm{HJ}(r,t) }[/math] such that for every [math]\displaystyle{ r }[/math]-coloring of the cube [math]\displaystyle{ A^n }[/math] where [math]\displaystyle{ n\ge \mathrm{HJ}(r,t) }[/math], there exists a combinatorial line, which is monochromatic.
Theorem (Hales-Jewett 1963) - Let [math]\displaystyle{ A }[/math] be a finte alphabet of [math]\displaystyle{ t }[/math] symbols and let [math]\displaystyle{ m,r }[/math] be positive integers. Then there exists an integer [math]\displaystyle{ \mathrm{HJ}(m,r,t) }[/math] such that for every [math]\displaystyle{ r }[/math]-coloring of the cube [math]\displaystyle{ A^n }[/math] where [math]\displaystyle{ n\ge \mathrm{HJ}(r,t) }[/math], there exists a combinatorial [math]\displaystyle{ m }[/math]-space, which is monochromatic.