随机算法 (Fall 2011)/Markov's Inequality
When applying probabilistic analysis, we often want a bound in form of [math]\displaystyle{ \Pr[X\ge t]\lt \epsilon }[/math] for some random variable [math]\displaystyle{ X }[/math] (think that [math]\displaystyle{ X }[/math] is a cost such as running time of a randomized algorithm). We call this a tail bound, or a tail inequality.
In principle, we can bound [math]\displaystyle{ \Pr[X\ge t] }[/math] by directly estimating the probability of the event that [math]\displaystyle{ X\ge t }[/math]. Besides this ad hoc way, we want to have some general tools which estimate tail probabilities based on certain information regarding the random variables.
Markov's Inequality
One of the most natural information about a random variable is its expectation, which is the first moment of the random variable. Markov's inequality draws a tail bound for a random variable from its expectation.
Theorem (Markov's Inequality) - Let [math]\displaystyle{ X }[/math] be a random variable assuming only nonnegative values. Then, for all [math]\displaystyle{ t\gt 0 }[/math],
- [math]\displaystyle{ \begin{align} \Pr[X\ge t]\le \frac{\mathbf{E}[X]}{t}. \end{align} }[/math]
- Let [math]\displaystyle{ X }[/math] be a random variable assuming only nonnegative values. Then, for all [math]\displaystyle{ t\gt 0 }[/math],
Proof. Let [math]\displaystyle{ Y }[/math] be the indicator such that - [math]\displaystyle{ \begin{align} Y &= \begin{cases} 1 & \mbox{if }X\ge t,\\ 0 & \mbox{otherwise.} \end{cases} \end{align} }[/math]
It holds that [math]\displaystyle{ Y\le\frac{X}{t} }[/math]. Since [math]\displaystyle{ Y }[/math] is 0-1 valued, [math]\displaystyle{ \mathbf{E}[Y]=\Pr[Y=1]=\Pr[X\ge t] }[/math]. Therefore,
- [math]\displaystyle{ \Pr[X\ge t] = \mathbf{E}[Y] \le \mathbf{E}\left[\frac{X}{t}\right] =\frac{\mathbf{E}[X]}{t}. }[/math]
- [math]\displaystyle{ \square }[/math]
Example (from Las Vegas to Monte Carlo)
Let [math]\displaystyle{ A }[/math] be a Las Vegas randomized algorithm for a decision problem [math]\displaystyle{ f }[/math], whose expected running time is within [math]\displaystyle{ T(n) }[/math] on any input of size [math]\displaystyle{ n }[/math]. We transform [math]\displaystyle{ A }[/math] to a Monte Carlo randomized algorithm [math]\displaystyle{ B }[/math] with bounded one-sided error as follows:
- [math]\displaystyle{ B(x) }[/math]:
- Run [math]\displaystyle{ A(x) }[/math] for [math]\displaystyle{ 2T(n) }[/math] long where [math]\displaystyle{ n }[/math] is the size of [math]\displaystyle{ x }[/math].
- If [math]\displaystyle{ A(x) }[/math] returned within [math]\displaystyle{ 2T(n) }[/math] time, then return what [math]\displaystyle{ A(x) }[/math] just returned, else return 1.
Since [math]\displaystyle{ A }[/math] is Las Vegas, its output is always correct, thus [math]\displaystyle{ B(x) }[/math] only errs when it returns 1, thus the error is one-sided. The error probability is bounded by the probability that [math]\displaystyle{ A(x) }[/math] runs longer than [math]\displaystyle{ 2T(n) }[/math]. Since the expected running time of [math]\displaystyle{ A(x) }[/math] is at most [math]\displaystyle{ T(n) }[/math], due to Markov's inequality,
- [math]\displaystyle{ \Pr[\mbox{the running time of }A(x)\ge2T(n)]\le\frac{\mathbf{E}[\mbox{running time of }A(x)]}{2T(n)}\le\frac{1}{2}, }[/math]
thus the error probability is bounded.
This easy reduction implies that ZPP[math]\displaystyle{ \subseteq }[/math]RP.
Generalization
For any random variable [math]\displaystyle{ X }[/math], for an arbitrary non-negative real function [math]\displaystyle{ h }[/math], the [math]\displaystyle{ h(X) }[/math] is a non-negative random variable. Applying Markov's inequality, we directly have that
- [math]\displaystyle{ \Pr[h(X)\ge t]\le\frac{\mathbf{E}[h(X)]}{t}. }[/math]
This trivial application of Markov's inequality gives us a powerful tool for proving tail inequalities. With the function [math]\displaystyle{ h }[/math] which extracts more information about the random variable, we can prove sharper tail inequalities.