Probability Basics
Independent events
We are all familiar with the concept of independent events:
Definition (Independent events):
- Two events [math]\displaystyle{ \mathcal{E}_1 }[/math] and [math]\displaystyle{ \mathcal{E}_2 }[/math] are independent if and only if
- [math]\displaystyle{ \begin{align}
\Pr\left[\mathcal{E}_1 \wedge \mathcal{E}_2\right]
&=
\Pr[\mathcal{E}_1]\cdot\Pr[\mathcal{E}_2].
\end{align} }[/math]
|
This definition can be generalized to more events:
Definition (Independent events):
- Event [math]\displaystyle{ \mathcal{E}_1, \mathcal{E}_2, \ldots, \mathcal{E}_n }[/math] are mutually independent if and only if, for any subset [math]\displaystyle{ I\subseteq\{1,2,\ldots,n\} }[/math],
- [math]\displaystyle{ \begin{align}
\Pr\left[\bigcap_{i\in I}\mathcal{E}_i\right]
&=
\prod_{i\in I}\Pr[\mathcal{E}_i].
\end{align} }[/math]
|
Note that in probability theory, the word "mutually independent" is not equivalent with "pair-wise independent", which we will learn in the future.
The union bound
We are familiar with the principle of inclusion-exclusion for finite sets.
Principle of Inclusion-Exclusion:
- Let [math]\displaystyle{ S_1, S_2, \ldots, S_n }[/math] be [math]\displaystyle{ n }[/math] finite sets. Then
- [math]\displaystyle{ \begin{align}
\left|\bigcup_{1\le i\le n}S_i\right|
&=
\sum_{i=1}^n|S_i|
-\sum_{i\lt j}|S_i\cap S_j|
+\sum_{i\lt j\lt k}|S_i\cap S_j\cap S_k|\\
& \quad -\cdots
+(-1)^{\ell-1}\sum_{i_1\lt i_2\lt \cdots\lt i_\ell}\left|\bigcap_{r=1}^\ell S_{i_r}\right|
+\cdots
+(-1)^{n-1} \left|\bigcap_{i=1}^n S_i\right|.
\end{align} }[/math]
|
The principle can be generalized to probability events.
Principle of Inclusion-Exclusion:
- Let [math]\displaystyle{ \mathcal{E}_1, \mathcal{E}_2, \ldots, \mathcal{E}_n }[/math] be [math]\displaystyle{ n }[/math] events. Then
- [math]\displaystyle{ \begin{align}
\Pr\left[\bigvee_{1\le i\le n}\mathcal{E}_i\right]
&=
\sum_{i=1}^n\Pr[\mathcal{E}_i]
-\sum_{i\lt j}\Pr[\mathcal{E}_i\wedge \mathcal{E}_j]
+\sum_{i\lt j\lt k}\Pr[\mathcal{E}_i\wedge \mathcal{E}_j\wedge \mathcal{E}_k]\\
& \quad -\cdots
+(-1)^{\ell-1}\sum_{i_1\lt i_2\lt \cdots\lt i_\ell}\Pr\left[\bigwedge_{r=1}^\ell \mathcal{E}_{i_r}\right]
+\cdots
+(-1)^{n-1}\Pr\left[\bigwedge_{i=1}^n \mathcal{E}_{i}\right].
\end{align} }[/math]
|
The proof of the principle is due to measure theory, and is omitted here. The following inequality is implied (nontrivially) by the principle of inclusion-exclusion:
Theorem (the union bound):
- Let [math]\displaystyle{ \mathcal{E}_1, \mathcal{E}_2, \ldots, \mathcal{E}_n }[/math] be [math]\displaystyle{ n }[/math] events. Then
- [math]\displaystyle{ \begin{align}
\Pr\left[\bigvee_{1\le i\le n}\mathcal{E}_i\right]
&\le
\sum_{i=1}^n\Pr[\mathcal{E}_i].
\end{align} }[/math]
|
The name of this inequality is Boole's inequality. It is usually referred by its nickname "the union bound". The bound holds for arbitrary events, even if they are dependent. Due to this generality, the union bound is one of the most useful probability inequalities for randomized algorithm analysis.
Linearity of expectation
Let [math]\displaystyle{ X }[/math] be a discrete random variable. The expectation of [math]\displaystyle{ X }[/math] is defined as follows.
Definition (Expectation):
- The expectation of a discrete random variable [math]\displaystyle{ X }[/math], denoted by [math]\displaystyle{ \mathbb{E}[X] }[/math], is given by
- [math]\displaystyle{ \begin{align}
\mathbb{E}[X] &= \sum_{x}x\Pr[X=x],
\end{align} }[/math]
- where the summation is over all values [math]\displaystyle{ x }[/math] in the range of [math]\displaystyle{ X }[/math].
|
Balls-into-bins model
Imagine that [math]\displaystyle{ m }[/math] balls are thrown into [math]\displaystyle{ n }[/math] bins, in such a way that each ball is thrown into a bin which is uniformly and independently chosen from all [math]\displaystyle{ n }[/math] bins. We may ask several questions regarding the distribution of balls in the bins, including:
- the probability that there is no bin with more than one balls (the birthday problem)
- the expected number of balls in each bin (occupancy problem)
- the maximum load of all bins with high probability (occupancy problem)
- the probability that there is no empty bin (coupon collector problem)
The birthday paradox
The occupancy problem
The coupon collector problem
Deviation bounds
Markov's inequality
Chebyshev's inequality
The coupon collector revisited
The [math]\displaystyle{ k }[/math]-Median Problem