Combinatorics (Fall 2010)/Extremal set theory II

From TCS Wiki
Revision as of 06:46, 3 November 2010 by imported>WikiSysop (Protected "Combinatorics (Fall 2010)/Extremal set theory II" ([edit=sysop] (indefinite) [move=sysop] (indefinite)))
Jump to navigation Jump to search

Shifting

Sauer's lemma and VC-dimension

Definition
Let [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] be set family and let [math]\displaystyle{ R\subseteq X }[/math] be a subset. The restriction of [math]\displaystyle{ \mathcal{F} }[/math] on [math]\displaystyle{ R }[/math], denoted [math]\displaystyle{ \mathcal{F}|_R }[/math] is defined as
[math]\displaystyle{ \mathcal{F}|_R=\{S\cap R\mid S\in\mathcal{F}\} }[/math].
We say that [math]\displaystyle{ \mathcal{F} }[/math] shatters [math]\displaystyle{ R }[/math] if [math]\displaystyle{ \mathcal{F}|_R=2^R }[/math], i.e. for all [math]\displaystyle{ T\subseteq R }[/math], there exists an [math]\displaystyle{ S\in\mathcal{F} }[/math] such that [math]\displaystyle{ T=S\cap R }[/math].
Sauer's Lemma (Sauer; Shelah-Perles; Vapnik-Chervonenkis)
Let [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] where [math]\displaystyle{ |X|=n }[/math]. If [math]\displaystyle{ |\mathcal{F}|\gt \sum_{1\le i\lt k}{n\choose i} }[/math], then there exists an [math]\displaystyle{ R\in{X\choose k} }[/math] such that [math]\displaystyle{ \mathcal{F} }[/math] shatters [math]\displaystyle{ R }[/math].
Definition (VC-dimension)
The Vapnik–Chervonenkis dimension (VC-dimension) of a set family [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math], denoted [math]\displaystyle{ \text{VC-dim}(\mathcal{F}) }[/math], is the size of the largest [math]\displaystyle{ R\subseteq X }[/math] shattered by [math]\displaystyle{ \mathcal{F} }[/math].

Kruskal–Katona theorem

Theorem (Kruskal 1963, Katona 1966)
Let [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math] with [math]\displaystyle{ |\mathcal{F}|=m }[/math], and suppose that
[math]\displaystyle{ m={n_k\choose k}+{n_{k-1}\choose k-1}+\cdots+{n_t\choose t} }[/math]
where [math]\displaystyle{ a_k\gt a_{k-1}\gt \cdots\gt a_t\ge t\ge 1 }[/math]. Then
[math]\displaystyle{ |\Delta\mathcal{F}|\ge {n_k\choose k-1}+{n_{k-1}\choose k-2}+\cdots+{n_t\choose t-1} }[/math].


Hypergraph coloring

Theorem (Erdős 1963)
Let [math]\displaystyle{ \mathcal{F} }[/math] be a [math]\displaystyle{ k }[/math]-uniform. If [math]\displaystyle{ |\mathcal{F}|\lt 2^{k-1} }[/math] then [math]\displaystyle{ \mathcal{F} }[/math] is 2-colorable.

Lovász local lemma

Colorings

Theorem (Erdős-Lovász 1975)
Let [math]\displaystyle{ \mathcal{F} }[/math] be a [math]\displaystyle{ k }[/math]-uniform. If every member of [math]\displaystyle{ \mathcal{F} }[/math] intersects at most [math]\displaystyle{ 2^{k-3} }[/math] other members, then [math]\displaystyle{ \mathcal{F} }[/math] is 2-colorable.