随机算法 (Fall 2011)/Graph Spectrum

From TCS Wiki
Revision as of 15:54, 19 July 2011 by 114.212.208.2 (talk) (→‎The spectral gap)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

The adjacency matrix of an [math]\displaystyle{ n }[/math]-vertex graph [math]\displaystyle{ G }[/math], denoted [math]\displaystyle{ A = A(G) }[/math], is an [math]\displaystyle{ n\times n }[/math] matrix where [math]\displaystyle{ A(u,v) }[/math] is the number of edges in [math]\displaystyle{ G }[/math] between vertex [math]\displaystyle{ u }[/math] and vertex [math]\displaystyle{ v }[/math]. Because [math]\displaystyle{ A }[/math] is a symmetric matrix with real entries, due to the Perron-Frobenius theorem, it has real eigenvalues [math]\displaystyle{ \lambda_1\ge\lambda_2\ge\cdots\ge\lambda_n }[/math], which associate with an orthonormal system of eigenvectors [math]\displaystyle{ v_1,v_2,\ldots, v_n\, }[/math] with [math]\displaystyle{ Av_i=\lambda_i v_i\, }[/math]. We call the eigenvalues of [math]\displaystyle{ A }[/math] the spectrum of the graph [math]\displaystyle{ G }[/math].

The spectrum of a graph contains a lot of information about the graph. For example, supposed that [math]\displaystyle{ G }[/math] is [math]\displaystyle{ d }[/math]-regular, the following lemma holds.

Lemma
  1. [math]\displaystyle{ |\lambda_i|\le d }[/math] for all [math]\displaystyle{ 1\le i\le n }[/math].
  2. [math]\displaystyle{ \lambda_1=d }[/math] and the corresponding eigenvector is [math]\displaystyle{ (\frac{1}{\sqrt{n}},\frac{1}{\sqrt{n}},\ldots,\frac{1}{\sqrt{n}}) }[/math].
  3. [math]\displaystyle{ G }[/math] is connected if and only if [math]\displaystyle{ \lambda_1\gt \lambda_2 }[/math].
  4. If [math]\displaystyle{ G }[/math] is bipartite then [math]\displaystyle{ \lambda_1=-\lambda_n }[/math].
Proof.
Let [math]\displaystyle{ A }[/math] be the adjacency matrix of [math]\displaystyle{ G }[/math], with entries [math]\displaystyle{ a_{ij} }[/math]. It is obvious that [math]\displaystyle{ \sum_{j}a_{ij}=d\, }[/math] for any [math]\displaystyle{ j }[/math].
  • (1) Suppose that [math]\displaystyle{ Ax=\lambda x, x\neq \mathbf{0} }[/math], and let [math]\displaystyle{ x_i }[/math] be an entry of [math]\displaystyle{ x }[/math] with the largest absolute value. Since [math]\displaystyle{ (Ax)_i=\lambda x_i }[/math], we have
[math]\displaystyle{ \sum_{j}a_{ij}x_j=\lambda x_i,\, }[/math]
and so
[math]\displaystyle{ |\lambda||x_i|=\left|\sum_{j}a_{ij}x_j\right|\le \sum_{j}a_{ij}|x_j|\le \sum_{j}a_{ij}|x_i| \le d|x_i|. }[/math]
Thus [math]\displaystyle{ |\lambda|\le d }[/math].
  • (2) is easy to check.
  • (3) Let [math]\displaystyle{ x }[/math] be the nonzero vector for which [math]\displaystyle{ Ax=dx }[/math], and let [math]\displaystyle{ x_i }[/math] be an entry of [math]\displaystyle{ x }[/math] with the largest absolute value. Since [math]\displaystyle{ (Ax)_i=d x_i }[/math], we have
[math]\displaystyle{ \sum_{j}a_{ij}x_j=d x_i.\, }[/math]
Since [math]\displaystyle{ \sum_{j}a_{ij}=d\, }[/math] and by the maximality of [math]\displaystyle{ x_i }[/math], it follows that [math]\displaystyle{ x_j=x_i }[/math] for all [math]\displaystyle{ j }[/math] that [math]\displaystyle{ a_{ij}\gt 0 }[/math]. Thus, [math]\displaystyle{ x_i=x_j }[/math] if [math]\displaystyle{ i }[/math] and [math]\displaystyle{ j }[/math] are adjacent, which implies that [math]\displaystyle{ x_i=x_j }[/math] if [math]\displaystyle{ i }[/math] and [math]\displaystyle{ j }[/math] are connected. For connected [math]\displaystyle{ G }[/math], all vertices are connected, thus all [math]\displaystyle{ x_i }[/math] are equal. This shows that if [math]\displaystyle{ G }[/math] is connected, the eigenvalue [math]\displaystyle{ d=\lambda_1 }[/math] has multiplicity 1, thus [math]\displaystyle{ \lambda_1\gt \lambda_2 }[/math].
If otherwise, [math]\displaystyle{ G }[/math] is disconnected, then for two different components, we have [math]\displaystyle{ Ax=dx }[/math] and [math]\displaystyle{ Ay=dy }[/math], where the entries of [math]\displaystyle{ x }[/math] and [math]\displaystyle{ y }[/math] are nonzero only for the vertices in their components components. Then [math]\displaystyle{ A(\alpha x+\beta y)=d(\alpha x+\beta y) }[/math]. Thus, the multiplicity of [math]\displaystyle{ d }[/math] is greater than 1, so [math]\displaystyle{ \lambda_1=\lambda_2 }[/math].
  • (4) If [math]\displaystyle{ G }[/math] if bipartite, then the vertex set can be partitioned into two disjoint nonempty sets [math]\displaystyle{ V_1 }[/math] and [math]\displaystyle{ V_2 }[/math] such that all edges have one endpoint in each of [math]\displaystyle{ V_1 }[/math] and [math]\displaystyle{ V_2 }[/math]. Algebraically, this means that the adjacency matrix can be organized into the form
[math]\displaystyle{ P^TAP=\begin{bmatrix} 0 & B\\ B^T & 0 \end{bmatrix} }[/math]
where [math]\displaystyle{ P }[/math] is a permutation matrix, which has no change on the eigenvalues.
If [math]\displaystyle{ x }[/math] is an eigenvector corresponding to the eigenvalue [math]\displaystyle{ \lambda }[/math], then [math]\displaystyle{ x' }[/math] which is obtained from [math]\displaystyle{ x }[/math] by changing the sign of the entries corresponding to vertices in [math]\displaystyle{ V_2 }[/math], is an eigenvector corresponding to the eigenvalue [math]\displaystyle{ -\lambda }[/math]. It follows that the spectrum of a bipartite graph is symmetric with respect to 0.
[math]\displaystyle{ \square }[/math]