随机算法 (Fall 2011)/The Probabilistic Method
Linearity of expectation
- Maximum cut
Given an undirected graph [math]\displaystyle{ G(V,E) }[/math], a set [math]\displaystyle{ C }[/math] of edges of [math]\displaystyle{ G }[/math] is called a cut if [math]\displaystyle{ G }[/math] is disconnected after removing the edges in [math]\displaystyle{ C }[/math]. We can represent a cut by [math]\displaystyle{ c(S,T) }[/math] where [math]\displaystyle{ (S,T) }[/math] is a bipartition of the vertex set [math]\displaystyle{ V }[/math], and [math]\displaystyle{ c(S,T)=\{uv\in E\mid u\in S,v\in T\} }[/math] is the set of edges crossing between [math]\displaystyle{ S }[/math] and [math]\displaystyle{ T }[/math].
We have seen how to compute min-cut: either by deterministic max-flow algorithm, or by Karger's randomized algorithm. On the other hand, max-cut is hard to compute, because it is NP-complete. Actually, the weighted version of max-cut is among the Karp's 21 NP-complete problems.
We now show by the probabilistic method that a max-cut always has at least half the edges.
Theorem - Given an undirected graph [math]\displaystyle{ G }[/math] with [math]\displaystyle{ n }[/math] vertices and [math]\displaystyle{ m }[/math] edges, there is a cut of size at least [math]\displaystyle{ \frac{m}{2} }[/math].
Proof. Enumerate the vertices in an arbitrary order. Partition the vertex set [math]\displaystyle{ V }[/math] into two disjoint sets [math]\displaystyle{ S }[/math] and [math]\displaystyle{ T }[/math] as follows. - For each vertex [math]\displaystyle{ v\in V }[/math],
- independently choose one of [math]\displaystyle{ S }[/math] and [math]\displaystyle{ T }[/math] with equal probability, and let [math]\displaystyle{ v }[/math] join the chosen set.
For each vertex [math]\displaystyle{ v\in V }[/math], let [math]\displaystyle{ X_v\in\{S,T\} }[/math] be the random variable which represents the set that [math]\displaystyle{ v }[/math] joins. For each edge [math]\displaystyle{ uv\in E }[/math], let [math]\displaystyle{ Y_{uv} }[/math] be the 0-1 random variable which indicates whether [math]\displaystyle{ uv }[/math] crosses between [math]\displaystyle{ S }[/math] and [math]\displaystyle{ T }[/math]. Clearly,
- [math]\displaystyle{ \Pr[Y_{uv}=1]=\Pr[X_u\neq X_v]=\frac{1}{2}. }[/math]
The size of [math]\displaystyle{ c(S,T) }[/math] is given by [math]\displaystyle{ Y=\sum_{uv\in E}Y_{uv} }[/math]. By the linearity of expectation,
- [math]\displaystyle{ \mathbf{E}[Y]=\sum_{uv\in E}\mathbf{E}[Y_{uv}]=\sum_{uv\in E}\Pr[Y_{uv}=1]=\frac{m}{2}. }[/math]
Therefore, there exist a bipartition [math]\displaystyle{ (S,T) }[/math] of [math]\displaystyle{ V }[/math] such that [math]\displaystyle{ |c(S,T)|\ge\frac{m}{2} }[/math], i.e. there exists a cut of [math]\displaystyle{ G }[/math] which contains at least [math]\displaystyle{ \frac{m}{2} }[/math] edges.
- For each vertex [math]\displaystyle{ v\in V }[/math],
- [math]\displaystyle{ \square }[/math]