组合数学 (Fall 2011)/Pólya's theory of counting

From TCS Wiki
Revision as of 08:25, 23 September 2011 by imported>Etone (→‎Burnside's Lemma)
Jump to navigation Jump to search

Groups

Burnside's Lemma

Burnside's Lemma
Let [math]\displaystyle{ G }[/math] be a permutation group acting on a set [math]\displaystyle{ X }[/math]. For each [math]\displaystyle{ \pi\in G }[/math], let [math]\displaystyle{ X_\pi=\{x\in X\mid \pi\circ x=x\} }[/math] be the set of elements invariant under group action by [math]\displaystyle{ \pi }[/math]. The number of orbits, denoted [math]\displaystyle{ |X/G| }[/math], is
[math]\displaystyle{ |X/G|=\frac{1}{|G|}\sum_{\pi\in G}|X_{\pi}|. }[/math]

Pólya's Theory of Counting