组合数学 (Fall 2011)/Pólya's theory of counting
Groups
A group [math]\displaystyle{ (G,\cdot) }[/math] is set [math]\displaystyle{ G }[/math] along with a binary operator [math]\displaystyle{ \cdot }[/math] which satisfies the following axioms:
- closure: [math]\displaystyle{ \forall g,h\in G, g\cdot h \in G }[/math];
- associativity: [math]\displaystyle{ \forall f,g,h\in G, f\cdot(g\cdot h)=(f\cdot g)\cdot h }[/math];
- identity: there exists a special element [math]\displaystyle{ e\in G }[/math], called the identity, such that [math]\displaystyle{ e\cdot g=g }[/math] for any [math]\displaystyle{ g\in G }[/math];
- inverse: [math]\displaystyle{ \forall g\in G }[/math], there exists an [math]\displaystyle{ h\in G }[/math] such that [math]\displaystyle{ g\cdot h=e }[/math], and we denote that [math]\displaystyle{ h=g^{-1} }[/math].
Permutation groups
Group action
Definition (group action) - A group action of a group [math]\displaystyle{ G }[/math] on a set [math]\displaystyle{ X }[/math] is a binary operator:
- [math]\displaystyle{ \circ:G\times X\rightarrow X }[/math]
- satisfying:
- Associativity: [math]\displaystyle{ (g\cdot h)\circ x=g\circ (h\circ x) }[/math] for all [math]\displaystyle{ g,h\in G }[/math] and [math]\displaystyle{ x\in X }[/math];
- Identity: [math]\displaystyle{ e\circ x=x }[/math] for all [math]\displaystyle{ x\in X }[/math].
- A group action of a group [math]\displaystyle{ G }[/math] on a set [math]\displaystyle{ X }[/math] is a binary operator:
Burnside's Lemma
Orbits
Counting orbits
Burnside's Lemma - Let [math]\displaystyle{ G }[/math] be a permutation group acting on a set [math]\displaystyle{ X }[/math]. For each [math]\displaystyle{ \pi\in G }[/math], let [math]\displaystyle{ X_\pi=\{x\in X\mid \pi\circ x=x\} }[/math] be the set of elements invariant under action by [math]\displaystyle{ \pi }[/math]. The number of orbits, denoted [math]\displaystyle{ |X/G| }[/math], is
- [math]\displaystyle{ |X/G|=\frac{1}{|G|}\sum_{\pi\in G}|X_{\pi}|. }[/math]
- Let [math]\displaystyle{ G }[/math] be a permutation group acting on a set [math]\displaystyle{ X }[/math]. For each [math]\displaystyle{ \pi\in G }[/math], let [math]\displaystyle{ X_\pi=\{x\in X\mid \pi\circ x=x\} }[/math] be the set of elements invariant under action by [math]\displaystyle{ \pi }[/math]. The number of orbits, denoted [math]\displaystyle{ |X/G| }[/math], is