高级算法 (Fall 2018)/Hashing and Sketching

From TCS Wiki
Revision as of 14:17, 18 September 2018 by imported>Etone (→‎Flajolet-Martin algorithm)
Jump to navigation Jump to search

Distinct Elements

Consider the following problem of counting distinct elements: Suppose that [math]\displaystyle{ \Omega }[/math] is a sufficiently large universe.

  • Input: a sequence of (not necessarily distinct) elements [math]\displaystyle{ x_1,x_2,\ldots,x_n\in\Omega }[/math];
  • Output: an estimation of the total number of distinct elements [math]\displaystyle{ z=|\{x_1,x_2,\ldots,x_n\}| }[/math].

A straightforward way of solving this problem is to maintain a dictionary data structure, which costs at least linear ([math]\displaystyle{ O(n) }[/math]) space. For big data, where [math]\displaystyle{ n }[/math] is very large, this is still too expensive. However, due to an information-theoretical argument, linear space is necessary if you want to compute the exact value of [math]\displaystyle{ z }[/math].

Our goal is to relax the problem a little bit to significantly reduce the space cost by tolerating approximate answers. The form of approximation we consider is [math]\displaystyle{ (\epsilon,\delta) }[/math]-estimator.

[math]\displaystyle{ (\epsilon,\delta) }[/math]-estimator
A random variable [math]\displaystyle{ \widehat{Z} }[/math] is an [math]\displaystyle{ (\epsilon,\delta) }[/math]-estimator of a quantity [math]\displaystyle{ z }[/math] if
[math]\displaystyle{ \Pr[\,(1-\epsilon)z\le \widehat{Z}\le (1+\epsilon)z\,]\ge 1-\delta }[/math].
[math]\displaystyle{ \widehat{Z} }[/math] is said to be an unbiased estimator of [math]\displaystyle{ z }[/math] if [math]\displaystyle{ \mathbb{E}[\widehat{Z}]=z }[/math].

Usually [math]\displaystyle{ \epsilon }[/math] is called approximation error and [math]\displaystyle{ \delta }[/math] is called confidence error.

We now present an elegant algorithm introduced by Flajolet and Martin in 1984. The algorithm can be implemented in data stream model: The input elements [math]\displaystyle{ x_1,x_2,\ldots,x_n }[/math] is presented to the algorithm one at a time, where the size of data [math]\displaystyle{ n }[/math] is unknown to the algorithm. The algorithm maintains a value [math]\displaystyle{ \widehat{Z} }[/math] which is an [math]\displaystyle{ (\epsilon,\delta) }[/math]-estimator of the total number of distinct elements [math]\displaystyle{ z=|\{x_1,x_2,\ldots,x_n\}| }[/math], using only a small amount of memory space to memorize (with loss) the data set [math]\displaystyle{ \{x_1,x_2,\ldots,x_n\} }[/math].

A famous quotation of Flajolet describes the performance of this algorithm as:

"Using only memory equivalent to 5 lines of printed text, you can estimate with a typical accuracy of 5% and in a single pass the total vocabulary of Shakespeare."

An estimator by hashing

Suppose that we can access to an idealized random hash function [math]\displaystyle{ h:\Omega\to[0,1] }[/math] which is uniformly distributed over all mappings from the universe [math]\displaystyle{ \Omega }[/math] to unit interval [math]\displaystyle{ [0,1] }[/math].

Recall that the input sequence [math]\displaystyle{ x_1,x_2,\ldots,x_n\in\Omega }[/math] consists of [math]\displaystyle{ z=|\{x_1,x_2,\ldots,x_n\}| }[/math] distinct elements. These elements are mapped by the random function [math]\displaystyle{ h }[/math] to [math]\displaystyle{ z }[/math] hash values uniformly and independently distributed in [math]\displaystyle{ [0,1] }[/math]. We could maintain these hash values instead of the original elements, but this would still be too expensive because in the worst case we still have up to [math]\displaystyle{ n }[/math] distinct values to maintain. However, due to the idealized random hash function, the unit interval [math]\displaystyle{ [0,1] }[/math] will be partitioned into [math]\displaystyle{ z+1 }[/math] subintervals by these [math]\displaystyle{ z }[/math] uniform and independent hash values. The typical length of the subinterval gives an estimation of the number [math]\displaystyle{ z }[/math].

Proposition
[math]\displaystyle{ \mathbb{E}\left[\min_{1\le i\le n}h(x_i)\right]=\frac{1}{z+1} }[/math].
Proof.

The input sequence [math]\displaystyle{ x_1,x_2,\ldots,x_n\in\Omega }[/math] consisting of [math]\displaystyle{ z }[/math] distinct elements are mapped to [math]\displaystyle{ z }[/math] random hash values uniformly and independently distributed in [math]\displaystyle{ [0,1] }[/math]. These [math]\displaystyle{ z }[/math] hash values partition the unit interval [math]\displaystyle{ [0,1] }[/math] into [math]\displaystyle{ z+1 }[/math] subintervals [math]\displaystyle{ [0,v_1],[v_1,v_2],[v_2,v_3]\ldots,[v_{z-1},v_z],[v_z,1] }[/math], where [math]\displaystyle{ v_i }[/math] denotes the [math]\displaystyle{ i }[/math]-th smallest value among all hash values [math]\displaystyle{ \{h(x_1),h(x_2),\ldots,h(x_n)\} }[/math]. Clearly we have

[math]\displaystyle{ v_1=\min_{1\le i\le n}h(x_i) }[/math].

Meanwhile, since all hash values are uniformly and independently distributed in [math]\displaystyle{ [0,1] }[/math], the lengths of all subintervals [math]\displaystyle{ v_1, v_2-v_1, v_3-v_2,\ldots, v_z-v_{z-1}, 1-v_z }[/math] are identically distributed. By symmetry, they have the same expectation, therefore

[math]\displaystyle{ (z+1)\mathbb{E}[v_1]= \mathbb{E}[v_1]+\sum_{i=1}^{z-1}\mathbb{E}[v_{i+1}-v_i]+\mathbb{E}[1-v_z] =\mathbb{E}\left[v_1+(v_2-v_1)+(v_3-v_2)+\cdots+(v_{z}-v_{z-1})+1-v_z\right] =1, }[/math]

which implies that

[math]\displaystyle{ \mathbb{E}\left[\min_{1\le i\le n}h(x_i)\right]=\mathbb{E}[v_1]=\frac{1}{z+1} }[/math].
[math]\displaystyle{ \square }[/math]

The quantity [math]\displaystyle{ \min_{1\le i\le n}h(x_i) }[/math] can be computed with small space cost (for storing the current smallest hash value) by scan the input sequence in a single pass. Because as we proved its expectation is [math]\displaystyle{ \frac{1}{z+1} }[/math], the smallest hash value [math]\displaystyle{ Y=\min_{1\le i\le n}h(x_i) }[/math] gives an unbiased estimator for [math]\displaystyle{ \frac{1}{z+1} }[/math]. However, [math]\displaystyle{ \frac{1}{Y}-1 }[/math] is not necessarily a good estimator for [math]\displaystyle{ z }[/math]. Actually, it is a rather poor estimator. Consider for example when [math]\displaystyle{ z=1 }[/math], all input elements are the same. In this case, there is only one hash value and [math]\displaystyle{ Y=\min_{1\le i\le n}h(x_i) }[/math] is distributed uniformly over [math]\displaystyle{ [0,1] }[/math], thus [math]\displaystyle{ \frac{1}{Y}-1 }[/math] fails to be close enough to the correct answer 1 with high probability.

Flajolet-Martin algorithm

The reason that the above estimator of a single hash function performs poorly is that the unbiased estimator [math]\displaystyle{ \min_{1\le i\le n}h(x_i) }[/math] has large variance. So a natural way to reduce this variance is to have multiple independent hash functions and take the average. This is precisely what Flajolet-Martin algorithm does.

Suppose that we can access to [math]\displaystyle{ k }[/math] independent random hash functions [math]\displaystyle{ h_1,h_2,\ldots,h_k }[/math], where each [math]\displaystyle{ h_j:\Omega\to[0,1] }[/math] is uniformly and independently distributed over all functions mapping [math]\displaystyle{ \Omega }[/math] to [math]\displaystyle{ [0,1] }[/math]. Here [math]\displaystyle{ k }[/math] is a parameter to be fixed by the desired approximation error [math]\displaystyle{ \epsilon }[/math] and confidence error [math]\displaystyle{ \delta }[/math]. The Flajolet-Martin algorithm is given by the following pseudocode.

Flajolet-Martin algorithm
Suppose that [math]\displaystyle{ h_1,h_2,\ldots,h_k:\Omega\to[0,1] }[/math] are [math]\displaystyle{ k }[/math] uniform and independent random hash functions, where [math]\displaystyle{ k }[/math] is a parameter to be fixed later.

Scan the input sequence [math]\displaystyle{ x_1,x_2,\ldots,x_n\in\Omega }[/math] in a single pass to compute:
  • [math]\displaystyle{ Y_j=\min_{1\le i\le n}h_j(x_i) }[/math] for every [math]\displaystyle{ j=1,2,\ldots,k }[/math];
  • average value [math]\displaystyle{ \overline{Y}=\frac{1}{k}\sum_{j=1}^kY_j }[/math];
return [math]\displaystyle{ \widehat{Z}=\frac{1}{\overline{Y}}-1 }[/math] as the estimator.

The algorithm is easy to implement in data stream model, with a space cost of storing [math]\displaystyle{ k }[/math] hash values. The following theorem guarantees that the algorithm returns an [math]\displaystyle{ (\epsilon,\delta) }[/math]-estimator of the total number of distinct elements for a suitable [math]\displaystyle{ k=O\left(\frac{1}{\epsilon^2\delta}\right) }[/math].

Theorem
For any [math]\displaystyle{ \epsilon,\delta\lt 1/2 }[/math], if [math]\displaystyle{ k\ge\left\lceil\frac{4}{\epsilon^2\delta}\right\rceil }[/math] then the output [math]\displaystyle{ \widehat{Z} }[/math] always gives an [math]\displaystyle{ (\epsilon,\delta) }[/math]-estimator of the correct answer [math]\displaystyle{ z }[/math].

In the following we prove this main theorem.

An obstacle to analyze the estimator [math]\displaystyle{ \widehat{Z}=\frac{1}{\overline{Y}}-1 }[/math] is that it is a nonlinear function of [math]\displaystyle{ \overline{Y} }[/math] who is easier to analyze. Nevertheless, we observe that [math]\displaystyle{ \widehat{Z} }[/math] is an [math]\displaystyle{ (\epsilon,\delta) }[/math]-estimator of [math]\displaystyle{ z }[/math] as long as [math]\displaystyle{ \overline{Y} }[/math] is an [math]\displaystyle{ (\epsilon/2,\delta) }[/math]-estimator of [math]\displaystyle{ \frac{1}{z+1} }[/math]. This can be deduced by just verifying the following:

[math]\displaystyle{ \frac{1-\epsilon/2}{z+1}\le \overline{Y}\le \frac{1+\epsilon/2}{z+1} \implies (1-\epsilon)z\le\frac{1}{\overline{Y}}-1\le (1+\epsilon)z }[/math],

for [math]\displaystyle{ \epsilon\lt \frac{1}{2} }[/math]. Therefore,

[math]\displaystyle{ \Pr\left[\,(1-\epsilon)z\le \widehat{Z} \le (1+\epsilon)z\,\right]\ge \Pr\left[\,\frac{1-\epsilon/2}{z+1}\le \overline{Y}\le \frac{1+\epsilon/2}{z+1}\,\right] =\Pr\left[\,\left|\overline{Y}-\frac{1}{z+1}\right|\le \frac{\epsilon/2}{z+1}\,\right] }[/math].

It is then sufficient to show that [math]\displaystyle{ \Pr\left[\,\left|\overline{Y}-\frac{1}{z+1}\right|\le \frac{\epsilon/2}{z+1}\,\right]\ge 1-\delta }[/math] for proving the main theorem above. We will see that this is equivalent to show the concentration inequality

[math]\displaystyle{ \Pr\left[\,\left|\overline{Y}-\mathbb{E}\left[\overline{Y}\right]\right|\le \frac{\epsilon/2}{z+1}\,\right]\ge 1-\delta\quad\qquad({\color{red}*}) }[/math].
Lemma
The followings hold for each [math]\displaystyle{ Y_j }[/math], [math]\displaystyle{ j=1,2\ldots,k }[/math], and [math]\displaystyle{ \overline{Y}=\frac{1}{k}\sum_{j=1}^kY_j }[/math]:
  • [math]\displaystyle{ \mathbb{E}\left[\overline{Y}\right]=\mathbb{E}\left[Y_j\right]=\frac{1}{z+1} }[/math];
  • [math]\displaystyle{ \mathbf{Var}\left[Y_j\right]\le\frac{1}{(z+1)^2} }[/math], and consequently [math]\displaystyle{ \mathbf{Var}\left[\overline{Y}\right]\le\frac{1}{k(z+1)^2} }[/math].
Proof.

As in the case of single hash function, by symmetry it holds that [math]\displaystyle{ \mathbb{E}[Y_j]=\frac{1}{z+1} }[/math] for every [math]\displaystyle{ j=1,2,\ldots,k }[/math]. Therefore,

[math]\displaystyle{ \mathbb{E}\left[\overline{Y}\right]=\frac{1}{k}\sum_{j=1}^k\mathbb{E}[Y_j]=\frac{1}{z+1} }[/math].

Recall that each [math]\displaystyle{ Y_j }[/math] is the minimum of [math]\displaystyle{ z }[/math] random hash values uniformly and independently distributed over [math]\displaystyle{ [0,1] }[/math]. By geometry probability, it holds that for any [math]\displaystyle{ y\in[0,1] }[/math],

[math]\displaystyle{ \Pr[Y_j\gt y]=(1-y)^z }[/math],

which means [math]\displaystyle{ \Pr[Y_j\le y]=1-(1-y)^z }[/math]. Taking the derivative with respect to [math]\displaystyle{ y }[/math], we obtain the probability density function of random variable [math]\displaystyle{ Y_j }[/math], which is [math]\displaystyle{ z(1-y)^{z-1} }[/math].

We then compute the second moment.

[math]\displaystyle{ \mathbb{E}[Y_j^2]=\int^{1}_0y^2z(1-y)^{z-1}\,\mathrm{d}y=\frac{2}{(z+1)(z+2)} }[/math].

The variance is bounded as

[math]\displaystyle{ \mathbf{Var}\left[Y_j\right]=\mathbb{E}\left[Y_j^2\right]-\mathbb{E}\left[Y_j\right]^2=\frac{2}{(z+1)(z+2)}-\frac{1}{(z+1)^2}\le\frac{1}{(z+1)^2} }[/math].

Due to the (pairwise) independence between [math]\displaystyle{ Y_j }[/math]'s,

[math]\displaystyle{ \mathbf{Var}\left[\overline{Y}\right]=\mathbf{Var}\left[\frac{1}{k}\sum_{j=1}^kY_j\right]=\frac{1}{k^2}\sum_{j=1}^k\mathbf{Var}\left[Y_j\right]\le \frac{1}{k(z+1)^2} }[/math].
[math]\displaystyle{ \square }[/math]

We resume to prove the inequality [math]\displaystyle{ ({\color{red}*}) }[/math]. By Chebyshev's inequality, it holds that

[math]\displaystyle{ \Pr\left[\,\left|\overline{Y}-\mathbb{E}\left[\overline{Y}\right]\right|\gt \frac{\epsilon/2}{z+1}\,\right] \le\frac{4}{\epsilon^2}(z+1)^2\mathbf{Var}\left[\overline{Y}\right] \le\frac{4}{\epsilon^2k} }[/math].

When [math]\displaystyle{ k\ge\left\lceil\frac{4}{\epsilon^2\delta}\right\rceil }[/math], this probability is at most [math]\displaystyle{ \delta }[/math]. The inequality [math]\displaystyle{ ({\color{red}*}) }[/math] is proved. As we discussed above, this proves the main theorem.

Uniform Hash Assumption (UHA)

In above we assume we can access to idealized random hash functions [math]\displaystyle{ h:\Omega\to[0,1] }[/math] with real values. With a more careful calculation, one can show the same performance guarantee for hash functions with discrete values as [math]\displaystyle{ h:\Omega\to[M] }[/math] where [math]\displaystyle{ M=\mathrm{poly}(n) }[/math], that is, the hash values are strings of [math]\displaystyle{ O(\log n) }[/math] bits.

Even with such improved analysis, a uniform random discrete function in form of [math]\displaystyle{ h:[N]\to[M] }[/math] is not really efficient to store or to compute. By an information-theretical argument, it takes at least [math]\displaystyle{ \Omega(N\log M) }[/math] bits to represent such a random hash function because this is the entropy of such uniform random function.

For the convenience of analysis, it is common to assume the following Uniform Hash Assumption (UHA) also known as Simple Uniform Hash Assumption (SUHA).

Uniform Hash Assumption (UHA)
A uniform random function [math]\displaystyle{ h:[N]\rightarrow[M] }[/math] is available and the computation of [math]\displaystyle{ h }[/math] is efficient.

Set Membership

Suppose that instead of actually finding the item [math]\displaystyle{ x }[/math] in the table, we only want to know whether an item [math]\displaystyle{ x }[/math] presents in a set [math]\displaystyle{ S }[/math], i.e. answers a very basic question:

"[math]\displaystyle{ \mbox{Is }x\in S? }[/math]"

This is called the membership problem, or membership query.

In many applications, the data set can be enormously large, thus the space limit is stringent; on the other hand, the answers need not to be 100% correct. This raises the approximate membership problem.

Bloom filter

Bloom filter is a space-efficient hash table that solves the approximate membership problem with one-sided error.

Given a set [math]\displaystyle{ S }[/math] of [math]\displaystyle{ n }[/math] items from a universe [math]\displaystyle{ [N] }[/math], a Bloom filter consists of an array [math]\displaystyle{ A }[/math] of [math]\displaystyle{ cn }[/math] bits, and [math]\displaystyle{ k }[/math] hash functions [math]\displaystyle{ h_1,h_2,\ldots,h_k }[/math] map [math]\displaystyle{ [N] }[/math] to [math]\displaystyle{ [cn] }[/math].

Assumption:

  • We apply the Simple Uniform Hash Assumption and assume [math]\displaystyle{ h_1,h_2,\ldots,h_k }[/math] are independent uniform random functions from [math]\displaystyle{ [N] }[/math] to [math]\displaystyle{ [cn] }[/math].

The Bloom filter is constructed as follows:

  • Initially, all bits in [math]\displaystyle{ A }[/math] are 0s.
  • For each [math]\displaystyle{ x\in S }[/math], let [math]\displaystyle{ A[h_i(x)]=1 }[/math] for all [math]\displaystyle{ 1\le i\le k }[/math].

To check if an item [math]\displaystyle{ x }[/math] is in [math]\displaystyle{ S }[/math], we check whether all array locations [math]\displaystyle{ A[h_i(x)] }[/math] for [math]\displaystyle{ 1\le i\le k }[/math] are set to 1. If not, then obviously [math]\displaystyle{ x }[/math] is not a member of [math]\displaystyle{ S }[/math]. Thus, the Bloom filter has no false negatives.

When all [math]\displaystyle{ A[h_i(x)] }[/math] for [math]\displaystyle{ 1\le i\le k }[/math] are set to 1, it is still possible that [math]\displaystyle{ x }[/math] is not in [math]\displaystyle{ S }[/math] and the bits are set by other items in [math]\displaystyle{ S }[/math]. So Bloom filter has false positives. We will bound this probability with the Simple Uniform Hash Assumption.

With the Simple Uniform Hash Assumption, each individual [math]\displaystyle{ h_i(x) }[/math] is a uniform and independent sampling of one element of [math]\displaystyle{ [cn] }[/math].

After all [math]\displaystyle{ n }[/math] items are hashed to Bloom filter, for any specific bit, the probability that the bit is still 0 (survives all [math]\displaystyle{ kn }[/math] hashing) is

[math]\displaystyle{ \left(1-\frac{1}{cn}\right)^{kn}\approx e^{-k/c}. }[/math]

For a query [math]\displaystyle{ x\not\in S }[/math], the [math]\displaystyle{ h_i(x) }[/math] are independent of the contents of [math]\displaystyle{ A }[/math]. The probability that all [math]\displaystyle{ A[h_i(x)] }[/math] are 1s (false positive) is

[math]\displaystyle{ \left(1-\left(1-\frac{1}{cn}\right)^{kn}\right)^k\approx \left(1- e^{-k/c}\right)^k. }[/math]

This probability is minimized when [math]\displaystyle{ k=c\ln 2 }[/math], in which case the probability of false positive is [math]\displaystyle{ (0.6185)^c. }[/math]

Bloom filter solves the membership query with a small constant error of false positives with linear number of bits (instead of linear number of entries).

Frequency Estimation

Count-min sketch