数据科学基础 (Fall 2025)/Problem Set 4
Jump to navigation
Jump to search
- 每道题目的解答都要有完整的解题过程,中英文不限。
- 我们推荐大家使用LaTeX, markdown等对作业进行排版。
- 没有条件的同学可以用纸笔完成作业之后拍照。
Assumption throughout Problem Set 4
Without further notice, we are working on probability space [math]\displaystyle{ (\Omega,\mathcal{F},\Pr) }[/math].
Without further notice, we assume that the expectation of random variables are well-defined.
Problem 1 (Moments and (co)variances)
- [Run] A biased coin is tossed [math]\displaystyle{ n }[/math] times, and heads shows with probability [math]\displaystyle{ p }[/math] on each toss. A run is a sequence of throws which result in the same outcome, so that, for example, the sequence HHTHTTH contains five runs.
- Find the expectation and the variance of the number of runs.
- Let [math]\displaystyle{ h }[/math] heads and [math]\displaystyle{ t }[/math] tails be arranged randomly in a line. Find the mean and variance of the number of runs of heads.
- [Gambler Lester Savage] The gambler Lester Savage makes up to three successive bets that a fair coin flip will show heads. He places a stake on each bet, which, if a head is shown, pays him back twice the stake. If a tail is shown, he loses his stake. His stakes are determined as follows. Let [math]\displaystyle{ x \gt y \gt z \gt 0 }[/math]. He bets x on the first flip; if it shows heads he quits, otherwise he continues. If he continues, he bets [math]\displaystyle{ y }[/math] on the second flip; if it shows heads he quits, otherwise he continues. If he continues, he bets [math]\displaystyle{ z }[/math] on the third flip. Let [math]\displaystyle{ G }[/math] be his accumulated gain (positive or negative).
- List the possible values of [math]\displaystyle{ G }[/math] and their probabilities. Show that [math]\displaystyle{ \mathbb E(G)= 0 }[/math], and find [math]\displaystyle{ \mathrm{Var}(G) }[/math]and [math]\displaystyle{ \Pr(G \lt 0) }[/math].
- Lester decides to stick with the three numbers [math]\displaystyle{ x, y, z }[/math] but to vary their order. How should he place his bets in order to simultaneously minimize both [math]\displaystyle{ \Pr(G \lt 0) }[/math] and [math]\displaystyle{ \mathrm{Var}(G) }[/math]? Explain.
- [Moments] Let [math]\displaystyle{ X }[/math] have mass function
- [math]\displaystyle{ f(x)=\begin{cases}1/(x(x+1)) & \text{if }x=1,2,\dots,\\ 0 &\text{otherwise,}\end{cases} }[/math]
- and let [math]\displaystyle{ \alpha\in\mathbb R }[/math]. For what values of [math]\displaystyle{ \alpha }[/math] is it the case that [math]\displaystyle{ \mathbb E[X^\alpha]\lt \infty }[/math]?
- [Covariance and correlation (i)] Let [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] be discrete random variables with correlation [math]\displaystyle{ \rho }[/math]. Show that [math]\displaystyle{ |\rho|= 1 }[/math] if and only if [math]\displaystyle{ X=aY+b }[/math] for some real numbers [math]\displaystyle{ a,b }[/math].
- [Covariance and correlation (ii)]Let [math]\displaystyle{ X, Y , Z }[/math] be non-degenerate and independent random variables. By considering [math]\displaystyle{ U= X + Y , V= Y + Z, W= Z− X }[/math], or otherwise, show that having positive correlation is not a transitive relation.
- [Uncorrelation versus Independence] Suppose [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] take values in [math]\displaystyle{ \{0,1\} }[/math], with joint mass function [math]\displaystyle{ f (x,y) }[/math]. Write [math]\displaystyle{ f (0,0)= a, f (0,1)= b, f (1,0)= c, f (1,1)= d }[/math], and find necessary and sufficient conditions for [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] to be: (a) uncorrelated, (b) independent.
- [Covariance Matrix] Let [math]\displaystyle{ \mathbf X= (X_1,X_2,...,X_n) }[/math] be a vector of random variables. The covariance matrix [math]\displaystyle{ \mathbf V(\mathbf X) }[/math] of [math]\displaystyle{ \mathbf X }[/math] is defined to be the symmetric [math]\displaystyle{ n }[/math] by [math]\displaystyle{ n }[/math] matrix with entries [math]\displaystyle{ (v_{i j} : 1 \le i,j \le n) }[/math] given by [math]\displaystyle{ v_{ij}= \mathrm{cov}(X_i ,X_j ) }[/math]. Show that [math]\displaystyle{ |\mathbf V(\mathbf X)| = 0 }[/math] if and only if the [math]\displaystyle{ X_i }[/math] are linearly dependent with probability one, in that [math]\displaystyle{ \Pr(a_1 X_1 + a_2 X_2 + \dots + a_n X_n = b)= 1 }[/math] for some [math]\displaystyle{ \mathbf a }[/math] and [math]\displaystyle{ b }[/math]. ([math]\displaystyle{ |\mathbf V| }[/math] denotes the determinant of [math]\displaystyle{ \mathbf V }[/math].)
- [Conditional variance formula]
- How should we define [math]\displaystyle{ \mathrm{Var}(Y | X) }[/math], the conditional variance of [math]\displaystyle{ Y }[/math] given [math]\displaystyle{ X }[/math]? Show that [math]\displaystyle{ \mathrm{Var}(Y )= \mathbb E[\mathrm{Var}(Y | X)]+ \mathrm{Var}(\mathbb E[Y | X]) }[/math].
- Let [math]\displaystyle{ X_1,X_2,\dots }[/math] be identically distributed random variables with mean [math]\displaystyle{ \mu }[/math] and variance [math]\displaystyle{ \sigma^2 }[/math], and let [math]\displaystyle{ N }[/math] be a random variable taking values in the non-negative integers and independent of the [math]\displaystyle{ X_i }[/math] . Let [math]\displaystyle{ S= X_1 + X_2 + \dots + X_N }[/math] . Show that [math]\displaystyle{ \mathbb E(S | N)= \mu N }[/math], and deduce that [math]\displaystyle{ \mathbb E(S)= \mu \mathbb E(N) }[/math]. Find [math]\displaystyle{ \mathrm{Var}(S) }[/math] in terms of the first two moments of [math]\displaystyle{ N }[/math], using the conditional variance formula.
Problem 2 (Markov and Chebyshev)
- [Markov's inequality] Let [math]\displaystyle{ X }[/math] be a discrete random variable. Show that for all [math]\displaystyle{ \beta \geq 0 }[/math] and all [math]\displaystyle{ x \gt 0 }[/math], [math]\displaystyle{ \Pr[X\geq x]\leq \mathbb{E}[e^{\beta X}]e^{-\beta x} }[/math].
- [Chebyshev's inequality (i) (Cantelli's inequality)] Show that [math]\displaystyle{ \Pr[X-\mathbb E[X]\gt t]\le\frac{\mathrm{Var}(X)}{t^2+\mathrm{Var}(X)}, \forall t\gt 0. }[/math]
- [Chebyshev's inequality (ii) (Paley–Zygmund inequality)]
- Let [math]\displaystyle{ X }[/math] be a random variable with [math]\displaystyle{ \mathbb E[X]\gt 0 }[/math] and [math]\displaystyle{ 0 \lt \mathbb E[X^2]\lt \infty }[/math]. Show that [math]\displaystyle{ \Pr[X \gt a\cdot\mathbb E[X]]\ge \frac{(1− a)^2\cdot \mathbb E[X]^2}{ \mathbb E[X^2]} }[/math] for [math]\displaystyle{ 0 \le a \le 1 }[/math].
- Deduce that, if [math]\displaystyle{ \Pr[X \ge 0]= 1 }[/math], then [math]\displaystyle{ \Pr[X= 0]\le\frac{\mathrm{Var}(X)}{\mathbb E[X^2]} \le \frac{\mathrm{Var}(X)}{\mathbb E[X]^2} }[/math].
- Let [math]\displaystyle{ A_1,A_2,\dots,A_n }[/math] be events, and let [math]\displaystyle{ X= \sum^n_{r=1} I_{A_r} }[/math] be the sum of their indicator functions. Show that [math]\displaystyle{ \Pr[X= 0]\le \frac 1{\mathbb E[X]} + \frac 1 {\mathbb E[X]^2}\sum^∗ \Pr[A_r \cap A_s ] }[/math], where the summation [math]\displaystyle{ \sum^∗ }[/math] is over all distinct unordered pairs [math]\displaystyle{ r, s }[/math] such that [math]\displaystyle{ A_r }[/math] and [math]\displaystyle{ A_s }[/math] are not independent.