组合数学 (Spring 2014)/Problem Set 3: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>Etone
imported>Etone
No edit summary
Line 1: Line 1:
==Problem 1 ==
==Problem 1 ==
Recall that <math>\chi(G)</math> is the chromatic number of graph <math>G</math>.
Prove:
* Any graph <math>G</math> must have at least <math>{\chi(G)\choose 2}</math> edges.
* For any two graphs <math>G(V,E)</math> and <math>H(V,F)</math>. Prove that <math>\chi(G\cup H)\le\chi(G)\chi(H)</math>.
==Problem 2 ==
(Erdős-Lovász 1975)
(Erdős-Lovász 1975)


Line 13: Line 6:
Use the probabilistic method to prove: For <math>k\ge 10</math>, there is a two coloring <math>f:V\rightarrow\{0,1\}</math> such that <math>\mathcal{H}</math> does not contain any monochromatic hyperedge <math>S\in\mathcal{H}</math>.
Use the probabilistic method to prove: For <math>k\ge 10</math>, there is a two coloring <math>f:V\rightarrow\{0,1\}</math> such that <math>\mathcal{H}</math> does not contain any monochromatic hyperedge <math>S\in\mathcal{H}</math>.


== Problem 3 ==
== Problem 2 ==
(Frankl 1986)
(Frankl 1986)


Line 20: Line 13:
* Show that <math>|\mathcal{F}|\le 1+{k\choose \lfloor k/2\rfloor}</math>.
* Show that <math>|\mathcal{F}|\le 1+{k\choose \lfloor k/2\rfloor}</math>.


== Problem 4 ==
== Problem 3 ==
Given a graph <math>G(V,E)</math>, a ''matching'' is a subset <math>M\subseteq E</math> of edges such that there are no two edges in <math>M</math> sharing a vertex, and a ''star'' is a subset <math>S\subseteq E</math> of edges such that every pair <math>e_1,e_2\in S</math> of distinct edges in <math>S</math> share the same vertex <math>v</math>.
Given a graph <math>G(V,E)</math>, a ''matching'' is a subset <math>M\subseteq E</math> of edges such that there are no two edges in <math>M</math> sharing a vertex, and a ''star'' is a subset <math>S\subseteq E</math> of edges such that every pair <math>e_1,e_2\in S</math> of distinct edges in <math>S</math> share the same vertex <math>v</math>.


Prove that any graph <math>G</math> containing more than <math>2(k-1)^2</math> edges either contains a matching of size <math>k</math> or a star of size <math>k</math>.
Prove that any graph <math>G</math> containing more than <math>2(k-1)^2</math> edges either contains a matching of size <math>k</math> or a star of size <math>k</math>.

Revision as of 10:56, 14 May 2014

Problem 1

(Erdős-Lovász 1975)

Let [math]\displaystyle{ \mathcal{H}\subseteq{V\choose k} }[/math] be a [math]\displaystyle{ k }[/math]-uniform [math]\displaystyle{ k }[/math]-regular hypergraph, so that for each [math]\displaystyle{ v\in V }[/math] there are exact [math]\displaystyle{ k }[/math] many [math]\displaystyle{ S\in\mathcal{H} }[/math] having [math]\displaystyle{ v\in S }[/math].

Use the probabilistic method to prove: For [math]\displaystyle{ k\ge 10 }[/math], there is a two coloring [math]\displaystyle{ f:V\rightarrow\{0,1\} }[/math] such that [math]\displaystyle{ \mathcal{H} }[/math] does not contain any monochromatic hyperedge [math]\displaystyle{ S\in\mathcal{H} }[/math].

Problem 2

(Frankl 1986)

Let [math]\displaystyle{ \mathcal{F}\subseteq {[n]\choose k} }[/math] be a [math]\displaystyle{ k }[/math]-uniform family, and suppose that it satisfies that [math]\displaystyle{ A\cap B \not\subset C }[/math] for any [math]\displaystyle{ A,B,C\in\mathcal{F} }[/math].

  • Fix any [math]\displaystyle{ B\in\mathcal{F} }[/math]. Show that the family [math]\displaystyle{ \{A\cap B\mid A\in\mathcal{F}, A\neq B\} }[/math] is an anti chain.
  • Show that [math]\displaystyle{ |\mathcal{F}|\le 1+{k\choose \lfloor k/2\rfloor} }[/math].

Problem 3

Given a graph [math]\displaystyle{ G(V,E) }[/math], a matching is a subset [math]\displaystyle{ M\subseteq E }[/math] of edges such that there are no two edges in [math]\displaystyle{ M }[/math] sharing a vertex, and a star is a subset [math]\displaystyle{ S\subseteq E }[/math] of edges such that every pair [math]\displaystyle{ e_1,e_2\in S }[/math] of distinct edges in [math]\displaystyle{ S }[/math] share the same vertex [math]\displaystyle{ v }[/math].

Prove that any graph [math]\displaystyle{ G }[/math] containing more than [math]\displaystyle{ 2(k-1)^2 }[/math] edges either contains a matching of size [math]\displaystyle{ k }[/math] or a star of size [math]\displaystyle{ k }[/math].