组合数学 (Spring 2025): Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
Gispzjz (talk | contribs)
Gispzjz (talk | contribs)
No edit summary
Line 1: Line 1:
{{Infobox
|name        = Infobox
|bodystyle    =
|title        = <font size=3>组合数学  <br>
Combinatorics</font>
|titlestyle  =


This is the webpage for the ''Combinatorics'' class of Spring 2024. Students who take this class should check this page periodically for content updates and new announcements.
|image        =
|imagestyle  =
|caption      =
|captionstyle =
|headerstyle  = background:#ccf;
|labelstyle  = background:#ddf;
|datastyle    =
 
|header1 =Instructor
|label1  =
|data1  =
|header2 =
|label2  =
|data2  = 尹一通
|header3 =
|label3  = Email
|data3  = yinyt@nju.edu.cn 
|header4 =
|label4= office
|data4= 计算机系 804
|header5 = Class
|label5  =
|data5  =
|header6 =
|label6  = Class meetings
|data6  = Wednesday, 2pm-4pm <br> 仙Ⅱ-211
|header7 =
|label7  = Place
|data7  =
|header8 =
|label8  = Office hours
|data8  = TBA <br>计算机系 804
|header9 = Textbook
|label9  =
|data9  =
|header10 =
|label10  =
|data10  = [[File:LW-combinatorics.jpeg|border|100px]]
|header11 =
|label11  =
|data11  = van Lint and Wilson. <br> ''A course in Combinatorics, 2nd ed.'', <br> Cambridge Univ Press, 2001.
|header12 =
|label12  =
|data12  = [[File:Jukna_book.jpg|border|100px]]
|header13 =
|label13  =
|data13  = Jukna. ''Extremal Combinatorics: <br> With Applications in Computer Science,<br>2nd ed.'', Springer, 2011.
|belowstyle = background:#ddf;
|below =
}}
 
This is the webpage for the ''Combinatorics'' class of Spring 2024. Students who take this class should check this page periodically for content updates and new announcements.  


= Announcement =
= Announcement =


= Course info =
= Course info =
* '''Instructor ''': 尹一通 ([http://tcs.nju.edu.cn/yinyt/ homepage])
* '''Instructor ''': 尹一通 ([http://tcs.nju.edu.cn/yinyt/ homepage])
 
:*'''email''': yinyt@nju.edu.cn
:* '''email''': yinyt@nju.edu.cn
:*'''office''': 计算机系 804  
:* '''office''': 计算机系 804
 
* '''Teaching assistant''':
* '''Teaching assistant''':
** [https://lhy-gispzjz.github.io/ 刘弘洋] ([mailto:liuhongyang@smail.nju.edu.cn liuhongyang@smail.nju.edu.cn])
** [https://lhy-gispzjz.github.io 刘弘洋] ([mailto:liuhongyang@smail.nju.edu.cn liuhongyang@smail.nju.edu.cn])
** 丁天行
** [丁天行]
* '''Class meeting''': Wednesday, 2pm-4pm, 逸A-322.
* '''Class meeting''': Wednesday, 2pm-4pm, 逸A-322.
* '''Office hour''': TBA
* '''Office hour''': TBA
:* '''QQ群''': TBA (加入时需报姓名、专业、学号)
:* '''QQ群''': TBA (加入时需报姓名、专业、学号)


Line 22: Line 75:


=== 先修课程 Prerequisites ===
=== 先修课程 Prerequisites ===
* 离散数学(Discrete Mathematics)
* 离散数学(Discrete Mathematics)
* 线性代数(Linear Algebra)
* 线性代数(Linear Algebra)
Line 28: Line 80:


=== Course materials ===
=== Course materials ===
 
* [[组合数学 (Spring 2024)/Course materials|<font size=3>教材和参考书清单</font>]]
* [https://tcs.nju.edu.cn/wiki/%E7%BB%84%E5%90%88%E6%95%B0%E5%AD%A6_(Spring_2024)/Course_materials <font size="3">教材和参考书清单</font>]


=== 成绩 Grades ===
=== 成绩 Grades ===
* 课程成绩:本课程将会有若干次作业和一次期末考试。最终成绩将由平时作业成绩 (≥ 60%) 和期末考试成绩 (≤ 40%) 综合得出。
* 课程成绩:本课程将会有若干次作业和一次期末考试。最终成绩将由平时作业成绩 (≥ 60%) 和期末考试成绩 (≤ 40%) 综合得出。
* 迟交:如果有特殊的理由,无法按时完成作业,请提前联系授课老师,给出正当理由。否则迟交的作业将不被接受。
* 迟交:如果有特殊的理由,无法按时完成作业,请提前联系授课老师,给出正当理由。否则迟交的作业将不被接受。


=== <font color="red"> 学术诚信 Academic Integrity </font> ===
=== <font color=red> 学术诚信 Academic Integrity </font>===
学术诚信是所有从事学术活动的学生和学者最基本的职业道德底线,本课程将不遗余力的维护学术诚信规范,违反这一底线的行为将不会被容忍。
学术诚信是所有从事学术活动的学生和学者最基本的职业道德底线,本课程将不遗余力的维护学术诚信规范,违反这一底线的行为将不会被容忍。


作业完成的原则:署你名字的工作必须是你个人的贡献。在完成作业的过程中,允许讨论,前提是讨论的所有参与者均处于同等完成度。但关键想法的执行、以及作业文本的写作必须独立完成,并在作业中致谢(acknowledge)所有参与讨论的人。不允许其他任何形式的合作——尤其是与已经完成作业的同学“讨论”。
作业完成的原则:署你名字的工作必须是你个人的贡献。在完成作业的过程中,允许讨论,前提是讨论的所有参与者均处于同等完成度。但关键想法的执行、以及作业文本的写作必须独立完成,并在作业中致谢(acknowledge)所有参与讨论的人。不允许其他任何形式的合作——尤其是与已经完成作业的同学“讨论”。


本课程将对剽窃行为采取零容忍的态度。在完成作业过程中,对他人工作(出版物、互联网资料、其他人的作业等)直接的文本抄袭和对关键思想、关键元素的抄袭,按照 [http://www.acm.org/publications/policies/plagiarism_policy ACM Policy on Plagiarism]的解释,都将视为剽窃。剽窃者成绩将被取消。如果发现互相抄袭行为,<font color="red"> 抄袭和被抄袭双方的成绩都将被取消</font>。因此请主动防止自己的作业被他人抄袭。
本课程将对剽窃行为采取零容忍的态度。在完成作业过程中,对他人工作(出版物、互联网资料、其他人的作业等)直接的文本抄袭和对关键思想、关键元素的抄袭,按照 [http://www.acm.org/publications/policies/plagiarism_policy ACM Policy on Plagiarism]的解释,都将视为剽窃。剽窃者成绩将被取消。如果发现互相抄袭行为,<font color=red> 抄袭和被抄袭双方的成绩都将被取消</font>。因此请主动防止自己的作业被他人抄袭。


学术诚信影响学生个人的品行,也关乎整个教育系统的正常运转。为了一点分数而做出学术不端的行为,不仅使自己沦为一个欺骗者,也使他人的诚实努力失去意义。让我们一起努力维护一个诚信的环境。
学术诚信影响学生个人的品行,也关乎整个教育系统的正常运转。为了一点分数而做出学术不端的行为,不仅使自己沦为一个欺骗者,也使他人的诚实努力失去意义。让我们一起努力维护一个诚信的环境。
Line 48: Line 98:


= Lecture Notes =
= Lecture Notes =
# [[组合数学 (Spring 2025)/Basic enumeration|Basic enumeration | 基本计数]]
# [[组合数学 (Spring 2025)/Basic enumeration|Basic enumeration | 基本计数]]  


= Resources =
= Resources =
* [http://math.mit.edu/~fox/MAT307.html Combinatorics course] by Jacob Fox
* [http://math.mit.edu/~fox/MAT307.html Combinatorics course] by Jacob Fox
* [https://yufeizhao.com/pm/ Probabilistic Methods in Combinatorics] and [https://yufeizhao.com/gtacbook/ Graph Theory and Additive Combinatorics] by Yufei Zhao
* [https://yufeizhao.com/pm/ Probabilistic Methods in Combinatorics] and [https://yufeizhao.com/gtacbook/ Graph Theory and Additive Combinatorics] by Yufei Zhao
Line 58: Line 107:


= Concepts =
= Concepts =
* [http://en.wikipedia.org/wiki/Binomial_coefficient Binomial coefficient]
* [http://en.wikipedia.org/wiki/Binomial_coefficient Binomial coefficient]
* [http://en.wikipedia.org/wiki/Twelvefold_way The twelvefold way]
* [http://en.wikipedia.org/wiki/Twelvefold_way The twelvefold way]
Line 77: Line 125:
* [http://en.wikipedia.org/wiki/Ryser%27s_formula#Ryser_formula Ryser's formula]
* [http://en.wikipedia.org/wiki/Ryser%27s_formula#Ryser_formula Ryser's formula]
* [http://en.wikipedia.org/wiki/Euler_totient Euler totient function]
* [http://en.wikipedia.org/wiki/Euler_totient Euler totient function]
* [[wikipedia:Burnside's_lemma|Burnside's lemma]]
* [https://en.wikipedia.org/wiki/Burnside%27s_lemma Burnside's lemma]
** [[wikipedia:Group_action|Group action]]
** [https://en.wikipedia.org/wiki/Group_action Group action]
** [[wikipedia:Group_action#Orbits_and_stabilizers|Orbits]]
** [https://en.wikipedia.org/wiki/Group_action#Orbits_and_stabilizers Orbits]
* [[wikipedia:Pólya_enumeration_theorem|Pólya enumeration theorem]]
* [https://en.wikipedia.org/wiki/P%C3%B3lya_enumeration_theorem Pólya enumeration theorem]
** [[wikipedia:Permutation_group|Permutation group]]
** [https://en.wikipedia.org/wiki/Permutation_group Permutation group]
** [[wikipedia:Cycle_index|Cycle index]]
** [https://en.wikipedia.org/wiki/Cycle_index Cycle index]
* [http://en.wikipedia.org/wiki/Cayley_formula Cayley's formula]
* [http://en.wikipedia.org/wiki/Cayley_formula Cayley's formula]
** [http://en.wikipedia.org/wiki/Pr%C3%BCfer_sequence Prüfer code for trees]
** [http://en.wikipedia.org/wiki/Prüfer_sequence Prüfer code for trees]
** [http://en.wikipedia.org/wiki/Kirchhoff%27s_matrix_tree_theorem Kirchhoff's matrix-tree theorem]
** [http://en.wikipedia.org/wiki/Kirchhoff%27s_matrix_tree_theorem Kirchhoff's matrix-tree theorem]
* [http://en.wikipedia.org/wiki/Double_counting_(proof_technique) Double counting] and the [http://en.wikipedia.org/wiki/Handshaking_lemma handshaking lemma]
* [http://en.wikipedia.org/wiki/Double_counting_(proof_technique) Double counting] and the [http://en.wikipedia.org/wiki/Handshaking_lemma handshaking lemma]
* [http://en.wikipedia.org/wiki/Sperner's_lemma Sperner's lemma] and [http://en.wikipedia.org/wiki/Brouwer_fixed_point_theorem Brouwer fixed point theorem]
* [http://en.wikipedia.org/wiki/Sperner's_lemma Sperner's lemma] and [http://en.wikipedia.org/wiki/Brouwer_fixed_point_theorem Brouwer fixed point theorem]
* [http://en.wikipedia.org/wiki/Pigeonhole_principle Pigeonhole principle]
* [http://en.wikipedia.org/wiki/Pigeonhole_principle Pigeonhole principle]
:* [http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Szekeres_theorem Erdős–Szekeres theorem]
:* [http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Szekeres_theorem Erdős–Szekeres theorem]
:* [http://en.wikipedia.org/wiki/Dirichlet's_approximation_theorem Dirichlet's approximation theorem]
:* [http://en.wikipedia.org/wiki/Dirichlet's_approximation_theorem Dirichlet's approximation theorem]
* [http://en.wikipedia.org/wiki/Probabilistic_method The Probabilistic Method]
* [http://en.wikipedia.org/wiki/Probabilistic_method The Probabilistic Method]
* [http://en.wikipedia.org/wiki/Lov%C3%A1sz_local_lemma Lovász local lemma]
* [http://en.wikipedia.org/wiki/Lov%C3%A1sz_local_lemma Lovász local lemma]
Line 98: Line 144:
* [http://en.wikipedia.org/wiki/Extremal_graph_theory Extremal graph theory]
* [http://en.wikipedia.org/wiki/Extremal_graph_theory Extremal graph theory]
* [http://en.wikipedia.org/wiki/Turan_theorem Turán's theorem], [http://en.wikipedia.org/wiki/Tur%C3%A1n_graph Turán graph]
* [http://en.wikipedia.org/wiki/Turan_theorem Turán's theorem], [http://en.wikipedia.org/wiki/Tur%C3%A1n_graph Turán graph]
* Two analytic inequalities:
* Two analytic inequalities:  
 
:*[http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality Cauchy–Schwarz inequality]
:* [http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality Cauchy–Schwarz inequality]
:* the [http://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means inequality of arithmetic and geometric means]
:* the [http://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means inequality of arithmetic and geometric means]
* [http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Stone_theorem Erdős–Stone theorem] (fundamental theorem of extremal graph theory)
* [http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Stone_theorem Erdős–Stone theorem] (fundamental theorem of extremal graph theory)
* [[wikipedia:Sunflower_(mathematics)|Sunflower lemma and conjecture]]
* [https://en.wikipedia.org/wiki/Sunflower_(mathematics) Sunflower lemma and conjecture]
* [[wikipedia:Erdős–Ko–Rado_theorem|Erdős–Ko–Rado theorem]]
* [https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Ko%E2%80%93Rado_theorem Erdős–Ko–Rado theorem]
* [[wikipedia:Sperner's_theorem|Sperner's theorem]]
* [https://en.wikipedia.org/wiki/Sperner%27s_theorem Sperner's theorem]
** [[wikipedia:Sperner_family|Sperner system]] or '''antichain'''
** [https://en.wikipedia.org/wiki/Sperner_family Sperner system] or '''antichain'''
* [[wikipedia:Sauer–Shelah_lemma|Sauer–Shelah lemma]]
* [https://en.wikipedia.org/wiki/Sauer%E2%80%93Shelah_lemma Sauer–Shelah lemma]
** [[wikipedia:Vapnik–Chervonenkis_dimension|Vapnik–Chervonenkis dimension]]
** [https://en.wikipedia.org/wiki/Vapnik%E2%80%93Chervonenkis_dimension Vapnik–Chervonenkis dimension]
* [[wikipedia:Kruskal–Katona_theorem|Kruskal–Katona theorem]]
* [https://en.wikipedia.org/wiki/Kruskal%E2%80%93Katona_theorem Kruskal–Katona theorem]
* [http://en.wikipedia.org/wiki/Ramsey_theory Ramsey theory]
* [http://en.wikipedia.org/wiki/Ramsey_theory Ramsey theory]
 
:*[http://en.wikipedia.org/wiki/Ramsey's_theorem Ramsey's theorem]
:* [http://en.wikipedia.org/wiki/Ramsey's_theorem Ramsey's theorem]
:*[http://en.wikipedia.org/wiki/Happy_Ending_problem Happy Ending problem]
:* [http://en.wikipedia.org/wiki/Happy_Ending_problem Happy Ending problem]
:*[https://en.wikipedia.org/wiki/Van_der_Waerden%27s_theorem Van der Waerden's theorem]
:* [[wikipedia:Van_der_Waerden's_theorem|Van der Waerden's theorem]]
:*[https://en.wikipedia.org/wiki/Hales%E2%80%93Jewett_theorem Hales–Jewett theorem]
:* [[wikipedia:Hales–Jewett_theorem|Hales–Jewett theorem]]
* [https://en.wikipedia.org/wiki/Hall%27s_marriage_theorem Hall's theorem ] (the marriage theorem)
 
:* [https://en.wikipedia.org/wiki/Doubly_stochastic_matrix Birkhoff–Von Neumann theorem]
* [[wikipedia:Hall's_marriage_theorem|Hall's theorem]] (the marriage theorem)
 
:* [[wikipedia:Doubly_stochastic_matrix|Birkhoff–Von Neumann theorem]]
 
* [http://en.wikipedia.org/wiki/K%C3%B6nig's_theorem_(graph_theory) König-Egerváry theorem]
* [http://en.wikipedia.org/wiki/K%C3%B6nig's_theorem_(graph_theory) König-Egerváry theorem]
* [http://en.wikipedia.org/wiki/Dilworth's_theorem Dilworth's theorem]
* [http://en.wikipedia.org/wiki/Dilworth's_theorem Dilworth's theorem]
:* [http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Szekeres_theorem Erdős–Szekeres theorem]
:* [http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Szekeres_theorem Erdős–Szekeres theorem]
* The  [http://en.wikipedia.org/wiki/Max-flow_min-cut_theorem Max-Flow Min-Cut Theorem]
* The  [http://en.wikipedia.org/wiki/Max-flow_min-cut_theorem Max-Flow Min-Cut Theorem]
 
:* [https://en.wikipedia.org/wiki/Menger%27s_theorem Menger's theorem]
:* [[wikipedia:Menger's_theorem|Menger's theorem]]
:* [http://en.wikipedia.org/wiki/Maximum_flow_problem Maximum flow]
:* [http://en.wikipedia.org/wiki/Maximum_flow_problem Maximum flow]
 
* [https://en.wikipedia.org/wiki/Linear_programming Linear programming]
* [[wikipedia:Linear_programming|Linear programming]]
** [https://en.wikipedia.org/wiki/Dual_linear_program Duality]  
** [[wikipedia:Dual_linear_program|Duality]]
** [https://en.wikipedia.org/wiki/Unimodular_matrix Unimodularity]
** [[wikipedia:Unimodular_matrix|Unimodularity]]
* [https://en.wikipedia.org/wiki/Matroid Matroid]
* [[wikipedia:Matroid|Matroid]]

Revision as of 09:25, 18 February 2025

组合数学
Combinatorics
Instructor
尹一通
Email yinyt@nju.edu.cn
office 计算机系 804
Class
Class meetings Wednesday, 2pm-4pm
仙Ⅱ-211
Office hours TBA
计算机系 804
Textbook
van Lint and Wilson.
A course in Combinatorics, 2nd ed.,
Cambridge Univ Press, 2001.
Jukna. Extremal Combinatorics:
With Applications in Computer Science,
2nd ed.
, Springer, 2011.
v · d · e

This is the webpage for the Combinatorics class of Spring 2024. Students who take this class should check this page periodically for content updates and new announcements.

Announcement

Course info

  • email: yinyt@nju.edu.cn
  • office: 计算机系 804
  • QQ群: TBA (加入时需报姓名、专业、学号)

Syllabus

先修课程 Prerequisites

  • 离散数学(Discrete Mathematics)
  • 线性代数(Linear Algebra)
  • 概率论(Probability Theory)

Course materials

成绩 Grades

  • 课程成绩:本课程将会有若干次作业和一次期末考试。最终成绩将由平时作业成绩 (≥ 60%) 和期末考试成绩 (≤ 40%) 综合得出。
  • 迟交:如果有特殊的理由,无法按时完成作业,请提前联系授课老师,给出正当理由。否则迟交的作业将不被接受。

学术诚信 Academic Integrity

学术诚信是所有从事学术活动的学生和学者最基本的职业道德底线,本课程将不遗余力的维护学术诚信规范,违反这一底线的行为将不会被容忍。

作业完成的原则:署你名字的工作必须是你个人的贡献。在完成作业的过程中,允许讨论,前提是讨论的所有参与者均处于同等完成度。但关键想法的执行、以及作业文本的写作必须独立完成,并在作业中致谢(acknowledge)所有参与讨论的人。不允许其他任何形式的合作——尤其是与已经完成作业的同学“讨论”。

本课程将对剽窃行为采取零容忍的态度。在完成作业过程中,对他人工作(出版物、互联网资料、其他人的作业等)直接的文本抄袭和对关键思想、关键元素的抄袭,按照 ACM Policy on Plagiarism的解释,都将视为剽窃。剽窃者成绩将被取消。如果发现互相抄袭行为, 抄袭和被抄袭双方的成绩都将被取消。因此请主动防止自己的作业被他人抄袭。

学术诚信影响学生个人的品行,也关乎整个教育系统的正常运转。为了一点分数而做出学术不端的行为,不仅使自己沦为一个欺骗者,也使他人的诚实努力失去意义。让我们一起努力维护一个诚信的环境。

Assignments

Lecture Notes

  1. Basic enumeration | 基本计数

Resources

Concepts