组合数学 (Fall 2015): Difference between revisions
Jump to navigation
Jump to search
imported>Etone |
imported>Etone |
||
Line 123: | Line 123: | ||
* [http://en.wikipedia.org/wiki/Catalan_number Catalan number] | * [http://en.wikipedia.org/wiki/Catalan_number Catalan number] | ||
* [http://en.wikipedia.org/wiki/Generating_function Generating function] and [http://en.wikipedia.org/wiki/Formal_power_series formal power series] | * [http://en.wikipedia.org/wiki/Generating_function Generating function] and [http://en.wikipedia.org/wiki/Formal_power_series formal power series] | ||
* [http://en.wikipedia.org/wiki/Binomial_series Newton's formula] | |||
* [http://en.wikipedia.org/wiki/Inclusion-exclusion_principle The principle of inclusion-exclusion] (and more generally the [http://en.wikipedia.org/wiki/Sieve_theory sieve method]) | |||
* [http://en.wikipedia.org/wiki/M%C3%B6bius_inversion_formula Möbius inversion formula] | |||
* [http://en.wikipedia.org/wiki/Derangement Derangement], and [http://en.wikipedia.org/wiki/M%C3%A9nage_problem Problème des ménages] | |||
* [http://en.wikipedia.org/wiki/Ryser%27s_formula#Ryser_formula Ryser's formula] | |||
* [http://en.wikipedia.org/wiki/Euler_totient Euler totient function] | |||
* [http://en.wikipedia.org/wiki/Cayley_formula Cayley's formula] | |||
** [http://en.wikipedia.org/wiki/Prüfer_sequence Prüfer code for trees] | |||
** [http://en.wikipedia.org/wiki/Kirchhoff%27s_matrix_tree_theorem Kirchhoff's matrix-tree theorem] | |||
* [http://en.wikipedia.org/wiki/Double_counting_(proof_technique) Double counting] and the [http://en.wikipedia.org/wiki/Handshaking_lemma handshaking lemma] | |||
* [http://en.wikipedia.org/wiki/Sperner's_lemma Sperner's lemma] and [http://en.wikipedia.org/wiki/Brouwer_fixed_point_theorem Brouwer fixed point theorem] | |||
* [http://en.wikipedia.org/wiki/Pigeonhole_principle Pigeonhole principle] | |||
:* [http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Szekeres_theorem Erdős–Szekeres theorem] | |||
:* [http://en.wikipedia.org/wiki/Dirichlet's_approximation_theorem Dirichlet's approximation theorem] |
Revision as of 07:55, 13 November 2015
This is the page for the class Combinatorics for the Fall 2015 semester. Students who take this class should check this page periodically for content updates and new announcements.
Announcement
- (2015/9/6) 第一次课程slides已上传。
- (2015/9/17) 第三次课程生成函数的slides已上传,其中包括了下次课要讲的一些内容。
- (2015/9/22) 第一次作业已发布,10月13日上课收。
- (2015/9/22) 9月29日停课一次。
- (2015/9/22) 生成函数部分的slide已更新,包含了课上讲的新内容。
- (2015/9/22) 第一次作业增加了最后一题。
- (2015/10/29) 在蔡沛程同学的神勇帮助下,我们的课程网站服务器终于重新上线了!
- (2015/11/2) 最近几次课程的slides已上传。
Course info
- Instructor : 尹一通
- email: yitong.yin@gmail.com, yinyt@nju.edu.cn,
- office: 804
- Class meeting: Tuesday 8am-10am, 仙 I-206.
- Office hour: Tuesday 2-4pm, 计算机系 804.
Syllabus
先修课程 Prerequisites
- 离散数学(Discrete Mathematics)
- 线性代数(Linear Algebra)
- 概率论(Probability Theory)
Course materials
成绩 Grades
- 课程成绩:本课程将会有若干次作业和一次期末考试。最终成绩将由平时作业成绩和期末考试成绩综合得出。
- 迟交:如果有特殊的理由,无法按时完成作业,请提前联系授课老师,给出正当理由。否则迟交的作业将不被接受。
学术诚信 Academic Integrity
学术诚信是所有从事学术活动的学生和学者最基本的职业道德底线,本课程将不遗余力的维护学术诚信规范,违反这一底线的行为将不会被容忍。
作业完成的原则:署你名字的工作必须由你完成。允许讨论,但作业必须独立完成,并在作业中列出所有参与讨论的人。不允许其他任何形式的合作——尤其是与已经完成作业的同学“讨论”。
本课程将对剽窃行为采取零容忍的态度。在完成作业过程中,对他人工作(出版物、互联网资料、其他人的作业等)直接的文本抄袭和对关键思想、关键元素的抄袭,按照 ACM Policy on Plagiarism的解释,都将视为剽窃。剽窃者成绩将被取消。如果发现互相抄袭行为, 抄袭和被抄袭双方的成绩都将被取消。因此请主动防止自己的作业被他人抄袭。
学术诚信影响学生个人的品行,也关乎整个教育系统的正常运转。为了一点分数而做出学术不端的行为,不仅使自己沦为一个欺骗者,也使他人的诚实努力失去意义。让我们一起努力维护一个诚信的环境。
Assignments
- Problem Set 1 due on Oct. 13 in class.
- Problem Set 2
Lecture Notes
- Introduction 课程简介( slides)
- Basic enumeration 基本计数( slides)
- Generating functions 生成函数( slides)
- Sieve methods( slides)
- Cayley's formula( slides)
- Pólya's theory of counting( slides)
- Existence problems
Concepts
- Binomial coefficient
- The twelvefold way
- Composition of a number
- Combinations with repetition, [math]\displaystyle{ k }[/math]-multisets on a set
- Multinomial coefficients
- Stirling number of the second kind
- Partition of a number
- Fibonacci number
- Catalan number
- Generating function and formal power series
- Newton's formula
- The principle of inclusion-exclusion (and more generally the sieve method)
- Möbius inversion formula
- Derangement, and Problème des ménages
- Ryser's formula
- Euler totient function
- Cayley's formula
- Double counting and the handshaking lemma
- Sperner's lemma and Brouwer fixed point theorem
- Pigeonhole principle