Tetration

From TCS Wiki
Jump to navigation Jump to search

Tetration is the hyperoperation which comes after exponentiation.[1] [math]\displaystyle{ ^{x}{y} }[/math] means y exponentiated by itself, (x-1) times.[2][3] List of first 4 natural number hyperoperations:

  1. Addition
    [math]\displaystyle{ a + n = a\!\underbrace{''{}^{\cdots}{}'}_n }[/math]
    a succeeded n times.
  2. Multiplication
    [math]\displaystyle{ a \times n = \underbrace{a + a + \cdots + a}_n }[/math]
    a added to itself, n times.
  3. Exponentiation
    [math]\displaystyle{ a^n = \underbrace{a \times a \times \cdots \times a}_n }[/math]
    a multiplied by itself, n times.
  4. Tetration
    [math]\displaystyle{ {^{n}a} = \underbrace{a^{a^{\cdot^{\cdot^{a}}}}}_n }[/math]
    Note (operator associativity): [math]\displaystyle{ {^{n}a} = \underbrace{(a^{(a^{(\cdot^{\cdot^{(a)...)}}}}}_n }[/math]
    a exponentiated by itself, n-1 times.

The above example is read as "the nth tetration of a".

Example

For the example, addition is assumed.

  1. [math]\displaystyle{ {^{2}3} = }[/math]
    [math]\displaystyle{ {3^{3}} = }[/math]
    [math]\displaystyle{ {3 \times 3 \times 3} = }[/math]
    [math]\displaystyle{ {3 \times (3 + 3 + 3)} = }[/math]
    [math]\displaystyle{ {3 \times {9}} = }[/math]
    [math]\displaystyle{ {3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 = 9 + 9 + 9} = }[/math]
    [math]\displaystyle{ 27 }[/math]

References

Template:Reflist

Template:Math-stub