组合数学 (Fall 2017): Difference between revisions
Jump to navigation
Jump to search
imported>Etone |
imported>Etone |
||
(31 intermediate revisions by the same user not shown) | |||
Line 62: | Line 62: | ||
* (2017/9/4) 新学期第一次上课。 | * (2017/9/4) 新学期第一次上课。 | ||
* (2017/9/18) 第一次作业发布。10月9日课上交。 | * (2017/9/18) 第一次作业发布。10月9日课上交。 | ||
* (2017/ | * (2017/10/16) 第一次作业发布。10月30日课上交。 | ||
* (2017/12/27) <font color=red size=4>考前习题讲解与作业答疑。1月6日下午2点计算机系224。</font> | |||
* (2017/12/27) <font color=red size=4>期末考试定于1月7日下午2点整准时开始,地点在仙2-504。</font> | |||
= Course info = | = Course info = | ||
Line 97: | Line 99: | ||
*[[组合数学 (Fall 2017)/Problem Set 1|Problem Set 1]] due on Oct 9, in class. | *[[组合数学 (Fall 2017)/Problem Set 1|Problem Set 1]] due on Oct 9, in class. | ||
*[[组合数学 (Fall 2017)/Problem Set 2|Problem Set 2]] due on Oct 30, in class. | *[[组合数学 (Fall 2017)/Problem Set 2|Problem Set 2]] due on Oct 30, in class. | ||
*[[组合数学 (Fall 2017)/Problem Set 3|Problem Set 3]] due on Nov 27, in class. | |||
*[[组合数学 (Fall 2017)/Problem Set 4|Problem Set 4]] due on Dec 25, in class. | |||
= Lecture Notes = | = Lecture Notes = | ||
Line 102: | Line 106: | ||
# [[组合数学 (Fall 2017)/Generating functions|Generating functions | 生成函数]] ( [http://tcs.nju.edu.cn/slides/comb2017/GeneratingFunction.pdf slides]) | # [[组合数学 (Fall 2017)/Generating functions|Generating functions | 生成函数]] ( [http://tcs.nju.edu.cn/slides/comb2017/GeneratingFunction.pdf slides]) | ||
# [[组合数学 (Fall 2017)/Pólya's theory of counting|Pólya's theory of counting | Pólya计数法]] ( [http://tcs.nju.edu.cn/slides/comb2017/Polya.pdf slides]): guest lecture by [http://cs.nju.edu.cn/zhangyuan/ Yuan Zhang] | # [[组合数学 (Fall 2017)/Pólya's theory of counting|Pólya's theory of counting | Pólya计数法]] ( [http://tcs.nju.edu.cn/slides/comb2017/Polya.pdf slides]): guest lecture by [http://cs.nju.edu.cn/zhangyuan/ Yuan Zhang] | ||
# [[组合数学 (Fall 2017)/Sieve methods|Sieve methods | 筛法]] | # [[组合数学 (Fall 2017)/Sieve methods|Sieve methods | 筛法]] ( [http://tcs.nju.edu.cn/slides/comb2017/PIE.pdf slides]) | ||
# Cayley's formula | Cayley公式 | # [[组合数学 (Fall 2017)/Cayley's formula|Cayley's formula | Cayley公式]]( [http://tcs.nju.edu.cn/slides/comb2017/Cayley.pdf slides]) | ||
# Existence problems | 存在性问题 | # [[组合数学 (Fall 2017)/Existence problems|Existence problems | 存在性问题]] ( [http://tcs.nju.edu.cn/slides/comb2017/Existence.pdf slides]) | ||
# The probabilistic method | 概率法 | # [[组合数学 (Fall 2017)/The probabilistic method|The probabilistic method | 概率法]]( [http://tcs.nju.edu.cn/slides/comb2017/ProbMethod.pdf slides]) | ||
# Extremal graph theory | 极值图论 | # [[组合数学 (Fall 2017)/Extremal graph theory|Extremal graph theory | 极值图论]]( [http://tcs.nju.edu.cn/slides/comb2017/ExtremalGraphs.pdf slides]) | ||
# Extremal set theory | 极值集合论 | # [[组合数学 (Fall 2017)/Extremal set theory|Extremal set theory | 极值集合论]]( [http://tcs.nju.edu.cn/slides/comb2017/ExtremalSets.pdf slides]) | ||
# Ramsey theory | Ramsey理论 | # [[组合数学 (Fall 2017)/Ramsey theory|Ramsey theory | Ramsey理论]]( [http://tcs.nju.edu.cn/slides/comb2017/Ramsey.pdf slides]) | ||
# Matching theory | 匹配论 | # [[组合数学 (Fall 2017)/Matching theory|Matching theory | 匹配论]]( [http://tcs.nju.edu.cn/slides/comb2017/Matchings.pdf slides]) | ||
= Concepts = | = Concepts = | ||
Line 134: | Line 138: | ||
* [http://en.wikipedia.org/wiki/Ryser%27s_formula#Ryser_formula Ryser's formula] | * [http://en.wikipedia.org/wiki/Ryser%27s_formula#Ryser_formula Ryser's formula] | ||
* [http://en.wikipedia.org/wiki/Euler_totient Euler totient function] | * [http://en.wikipedia.org/wiki/Euler_totient Euler totient function] | ||
* [http://en.wikipedia.org/wiki/Cayley_formula Cayley's formula] | |||
** [http://en.wikipedia.org/wiki/Prüfer_sequence Prüfer code for trees] | |||
** [http://en.wikipedia.org/wiki/Kirchhoff%27s_matrix_tree_theorem Kirchhoff's matrix-tree theorem] | |||
* [http://en.wikipedia.org/wiki/Double_counting_(proof_technique) Double counting] and the [http://en.wikipedia.org/wiki/Handshaking_lemma handshaking lemma] | |||
* [http://en.wikipedia.org/wiki/Sperner's_lemma Sperner's lemma] and [http://en.wikipedia.org/wiki/Brouwer_fixed_point_theorem Brouwer fixed point theorem] | |||
* [http://en.wikipedia.org/wiki/Pigeonhole_principle Pigeonhole principle] | |||
:* [http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Szekeres_theorem Erdős–Szekeres theorem] | |||
:* [http://en.wikipedia.org/wiki/Dirichlet's_approximation_theorem Dirichlet's approximation theorem] | |||
* [http://en.wikipedia.org/wiki/Probabilistic_method The Probabilistic Method] | |||
* [http://en.wikipedia.org/wiki/Lov%C3%A1sz_local_lemma Lovász local lemma] | |||
* [http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model Erdős–Rényi model for random graphs] | |||
* [http://en.wikipedia.org/wiki/Extremal_graph_theory Extremal graph theory] | |||
* [http://en.wikipedia.org/wiki/Turan_theorem Turán's theorem], [http://en.wikipedia.org/wiki/Tur%C3%A1n_graph Turán graph] | |||
* Two analytic inequalities: | |||
:*[http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality Cauchy–Schwarz inequality] | |||
:* the [http://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means inequality of arithmetic and geometric means] | |||
* [http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Stone_theorem Erdős–Stone theorem] (fundamental theorem of extremal graph theory) | |||
* [https://en.wikipedia.org/wiki/Sunflower_(mathematics) Sunflower lemma and conjecture] | |||
* [http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Ko%E2%80%93Rado_theorem Erdős–Ko–Rado theorem] | |||
* [http://en.wikipedia.org/wiki/Sperner_family Sperner system] | |||
* [https://en.wikipedia.org/wiki/Sauer–Shelah_lemma Sauer's lemma] and [https://en.wikipedia.org/wiki/VC_dimension VC dimension] | |||
* [https://en.wikipedia.org/wiki/Kruskal–Katona_theorem Kruskal–Katona theorem] | |||
* [http://en.wikipedia.org/wiki/Ramsey_theory Ramsey theory] | |||
:*[http://en.wikipedia.org/wiki/Ramsey's_theorem Ramsey's theorem] | |||
:*[http://en.wikipedia.org/wiki/Happy_Ending_problem Happy Ending problem] | |||
* [https://en.wikipedia.org/wiki/Hall%27s_marriage_theorem Hall's theorem ] (the marriage theorem) | |||
:* [https://en.wikipedia.org/wiki/Doubly_stochastic_matrix Birkhoff–Von Neumann theorem] | |||
* [http://en.wikipedia.org/wiki/K%C3%B6nig's_theorem_(graph_theory) König-Egerváry theorem] | |||
* [http://en.wikipedia.org/wiki/Dilworth's_theorem Dilworth's theorem] | |||
:* [http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Szekeres_theorem Erdős–Szekeres theorem] | |||
* The [http://en.wikipedia.org/wiki/Max-flow_min-cut_theorem Max-Flow Min-Cut Theorem] | |||
:* [https://en.wikipedia.org/wiki/Menger%27s_theorem Menger's theorem] | |||
:* [http://en.wikipedia.org/wiki/Maximum_flow_problem Maximum flow] |
Latest revision as of 07:38, 2 January 2018
This is the webpage for the Combinatorics class of fall 2017. Students who take this class should check this page periodically for content updates and new announcements.
Announcement
- (2017/9/4) 新学期第一次上课。
- (2017/9/18) 第一次作业发布。10月9日课上交。
- (2017/10/16) 第一次作业发布。10月30日课上交。
- (2017/12/27) 考前习题讲解与作业答疑。1月6日下午2点计算机系224。
- (2017/12/27) 期末考试定于1月7日下午2点整准时开始,地点在仙2-504。
Course info
- Instructor : 尹一通
- email: yitong.yin@gmail.com, yinyt@nju.edu.cn,
- office: 804
- Class meeting: Monday 10am, 仙II-504.
- Office hour: Monday 2-4pm, 计算机系 804.
Syllabus
先修课程 Prerequisites
- 离散数学(Discrete Mathematics)
- 线性代数(Linear Algebra)
- 概率论(Probability Theory)
Course materials
成绩 Grades
- 课程成绩:本课程将会有若干次作业和一次期末考试。最终成绩将由平时作业成绩和期末考试成绩综合得出。
- 迟交:如果有特殊的理由,无法按时完成作业,请提前联系授课老师,给出正当理由。否则迟交的作业将不被接受。
学术诚信 Academic Integrity
学术诚信是所有从事学术活动的学生和学者最基本的职业道德底线,本课程将不遗余力的维护学术诚信规范,违反这一底线的行为将不会被容忍。
作业完成的原则:署你名字的工作必须由你完成。允许讨论,但作业必须独立完成,并在作业中列出所有参与讨论的人。不允许其他任何形式的合作——尤其是与已经完成作业的同学“讨论”。
本课程将对剽窃行为采取零容忍的态度。在完成作业过程中,对他人工作(出版物、互联网资料、其他人的作业等)直接的文本抄袭和对关键思想、关键元素的抄袭,按照 ACM Policy on Plagiarism的解释,都将视为剽窃。剽窃者成绩将被取消。如果发现互相抄袭行为, 抄袭和被抄袭双方的成绩都将被取消。因此请主动防止自己的作业被他人抄袭。
学术诚信影响学生个人的品行,也关乎整个教育系统的正常运转。为了一点分数而做出学术不端的行为,不仅使自己沦为一个欺骗者,也使他人的诚实努力失去意义。让我们一起努力维护一个诚信的环境。
Assignments
- Problem Set 1 due on Oct 9, in class.
- Problem Set 2 due on Oct 30, in class.
- Problem Set 3 due on Nov 27, in class.
- Problem Set 4 due on Dec 25, in class.
Lecture Notes
- Basic enumeration | 基本计数 ( slides)
- Generating functions | 生成函数 ( slides)
- Pólya's theory of counting | Pólya计数法 ( slides): guest lecture by Yuan Zhang
- Sieve methods | 筛法 ( slides)
- Cayley's formula | Cayley公式( slides)
- Existence problems | 存在性问题 ( slides)
- The probabilistic method | 概率法( slides)
- Extremal graph theory | 极值图论( slides)
- Extremal set theory | 极值集合论( slides)
- Ramsey theory | Ramsey理论( slides)
- Matching theory | 匹配论( slides)
Concepts
- Binomial coefficient
- The twelvefold way
- Composition of a number
- Multiset
- Combinations with repetition, [math]\displaystyle{ k }[/math]-multisets on a set
- Multinomial coefficients
- Stirling number of the second kind
- Partition of a number
- Fibonacci number
- Catalan number
- Generating function and formal power series
- Newton's formula
- Burnside's lemma
- group action and orbits
- Cycle decomposition of permutation
- Pólya enumeration theorem
- The principle of inclusion-exclusion (and more generally the sieve method)
- Möbius inversion formula
- Derangement, and Problème des ménages
- Ryser's formula
- Euler totient function
- Cayley's formula
- Double counting and the handshaking lemma
- Sperner's lemma and Brouwer fixed point theorem
- Pigeonhole principle
- The Probabilistic Method
- Lovász local lemma
- Erdős–Rényi model for random graphs
- Extremal graph theory
- Turán's theorem, Turán graph
- Two analytic inequalities:
- Erdős–Stone theorem (fundamental theorem of extremal graph theory)
- Sunflower lemma and conjecture
- Erdős–Ko–Rado theorem
- Sperner system
- Sauer's lemma and VC dimension
- Kruskal–Katona theorem
- Ramsey theory
- Hall's theorem (the marriage theorem)