组合数学 (Fall 2019): Difference between revisions
Jump to navigation
Jump to search
imported>Etone |
imported>Etone |
||
(One intermediate revision by the same user not shown) | |||
Line 62: | Line 62: | ||
* (2019/9/6) 第一课的lecture notes和slides已经发布。 | * (2019/9/6) 第一课的lecture notes和slides已经发布。 | ||
* (2019/10/21)外网数学符号显示已经正常。 | * (2019/10/21)外网数学符号显示已经正常。 | ||
* (2019/11/04)<font color=red size=4> | * (2019/11/04)11月6日按原定计划上习题课。教服系统中的“停课”指的是:正常新内容的授课暂停一次,原授课时间段改为上习题课。 | ||
* (2019/12/25)<font color=red size=4>12月29日(星期日)下午4点在原授课教室讲解习题和答疑。</font> | |||
= Course info = | = Course info = | ||
Line 113: | Line 114: | ||
# [[组合数学 (Fall 2019)/Extremal set theory|Extremal set theory | 极值集合论]]( [http://tcs.nju.edu.cn/slides/comb2019/ExtremalSets.pdf slides]) | # [[组合数学 (Fall 2019)/Extremal set theory|Extremal set theory | 极值集合论]]( [http://tcs.nju.edu.cn/slides/comb2019/ExtremalSets.pdf slides]) | ||
# [[组合数学 (Fall 2019)/Ramsey theory|Ramsey theory | Ramsey理论]]( [http://tcs.nju.edu.cn/slides/comb2019/Ramsey.pdf slides]) | # [[组合数学 (Fall 2019)/Ramsey theory|Ramsey theory | Ramsey理论]]( [http://tcs.nju.edu.cn/slides/comb2019/Ramsey.pdf slides]) | ||
# [[组合数学 (Fall 2019)/Matching theory|Matching theory | 匹配论]]( [http://tcs.nju.edu.cn/slides/ | # [[组合数学 (Fall 2019)/Matching theory|Matching theory | 匹配论]]( [http://tcs.nju.edu.cn/slides/comb2019/Matchings.pdf slides]) | ||
= Resources = | = Resources = |
Latest revision as of 06:43, 27 December 2019
This is the webpage for the Combinatorics class of fall 2019. Students who take this class should check this page periodically for content updates and new announcements.
Announcement
- (2019/9/6) 第一课的lecture notes和slides已经发布。
- (2019/10/21)外网数学符号显示已经正常。
- (2019/11/04)11月6日按原定计划上习题课。教服系统中的“停课”指的是:正常新内容的授课暂停一次,原授课时间段改为上习题课。
- (2019/12/25)12月29日(星期日)下午4点在原授课教室讲解习题和答疑。
Course info
- Instructor : 尹一通 (homepage)
- email: yinyt@nju.edu.cn
- office: 804
- Teaching assistant: 陈海敏 (email, homepage),蒋圣翊 (email, homepage)
- Class meeting: Wednesday, 2pm-4pm, 仙I-319.
- Office hour: Wednesday, 4pm-6pm, 计算机系 804.
Syllabus
先修课程 Prerequisites
- 离散数学(Discrete Mathematics)
- 线性代数(Linear Algebra)
- 概率论(Probability Theory)
Course materials
成绩 Grades
- 课程成绩:本课程将会有若干次作业和一次期末考试。最终成绩将由平时作业成绩 (≥ 60%) 和期末考试成绩 (≤ 40%) 综合得出。
- 迟交:如果有特殊的理由,无法按时完成作业,请提前联系授课老师,给出正当理由。否则迟交的作业将不被接受。
学术诚信 Academic Integrity
学术诚信是所有从事学术活动的学生和学者最基本的职业道德底线,本课程将不遗余力的维护学术诚信规范,违反这一底线的行为将不会被容忍。
作业完成的原则:署你名字的工作必须是你个人的贡献。在完成作业的过程中,允许讨论,前提是讨论的所有参与者均处于同等完成度。但关键想法的执行、以及作业文本的写作必须独立完成,并在作业中致谢(acknowledge)所有参与讨论的人。不允许其他任何形式的合作——尤其是与已经完成作业的同学“讨论”。
本课程将对剽窃行为采取零容忍的态度。在完成作业过程中,对他人工作(出版物、互联网资料、其他人的作业等)直接的文本抄袭和对关键思想、关键元素的抄袭,按照 ACM Policy on Plagiarism的解释,都将视为剽窃。剽窃者成绩将被取消。如果发现互相抄袭行为, 抄袭和被抄袭双方的成绩都将被取消。因此请主动防止自己的作业被他人抄袭。
学术诚信影响学生个人的品行,也关乎整个教育系统的正常运转。为了一点分数而做出学术不端的行为,不仅使自己沦为一个欺骗者,也使他人的诚实努力失去意义。让我们一起努力维护一个诚信的环境。
Assignments
- Problem Set 1 due on Sept 25, in class. 当前作业1已提交名单.
- Problem Set 2 due on Oct 23, in class. 当前作业2已提交名单.
- 组合数学补充习题讲解
- Problem Set 3 due on Dec 4, in class. 当前作业3已提交名单.
- Problem Set 4 due on Dec 18, in class. 当前作业4已提交名单.
Lecture Notes
- Basic enumeration | 基本计数 ( slides)
- Generating functions | 生成函数 ( slides)
- Sieve methods | 筛法 ( slides)
- Pólya's theory of counting | Pólya计数法 ( slides)
- Cayley's formula | Cayley公式( slides)
- Existence problems | 存在性问题 ( slides)
- The probabilistic method | 概率法( slides)
- Extremal graph theory | 极值图论( slides)
- Extremal set theory | 极值集合论( slides)
- Ramsey theory | Ramsey理论( slides)
- Matching theory | 匹配论( slides)
Resources
- Combinatorics course by Jacob Fox (now at Stanford) taught at MIT and Princeton.
- Collection of Combinatorics Videos
Concepts
- Binomial coefficient
- The twelvefold way
- Composition of a number
- Multiset
- Combinations with repetition, [math]\displaystyle{ k }[/math]-multisets on a set
- Multinomial coefficients
- Stirling number of the second kind
- Partition of a number
- Fibonacci number
- Catalan number
- Generating function and formal power series
- Newton's formula
- Burnside's lemma
- group action and orbits
- Cycle decomposition of permutation
- Pólya enumeration theorem
- The principle of inclusion-exclusion (and more generally the sieve method)
- Möbius inversion formula
- Derangement, and Problème des ménages
- Ryser's formula
- Euler totient function
- Cayley's formula
- Double counting and the handshaking lemma
- Sperner's lemma and Brouwer fixed point theorem
- Pigeonhole principle
- The Probabilistic Method
- Lovász local lemma
- Erdős–Rényi model for random graphs
- Extremal graph theory
- Turán's theorem, Turán graph
- Two analytic inequalities:
- Erdős–Stone theorem (fundamental theorem of extremal graph theory)
- Sunflower lemma and conjecture
- Erdős–Ko–Rado theorem
- Sperner system
- Sauer's lemma and VC dimension
- Kruskal–Katona theorem
- Ramsey theory
- Hall's theorem (the marriage theorem)