概率论与数理统计 (Spring 2024): Difference between revisions
(20 intermediate revisions by 4 users not shown) | |||
Line 120: | Line 120: | ||
= Assignments = | = Assignments = | ||
*[[概率论与数理统计 (Spring 2024)/Problem Set 1|Problem Set 1]] 请在 <strike>2024/4/3</strike><font color=red>2024/4/8</font> 上课之前(2pm UTC+8)提交到 [mailto:pr2024_nju@163.com pr2024_nju@163.com] (文件名为'<font color=red >学号_姓名_A1.pdf</font>'). [[概率论与数理统计 (Spring 2024)/第一次作业提交名单|第一次作业提交名单]] | *[[概率论与数理统计 (Spring 2024)/Problem Set 1|Problem Set 1]] 请在 <strike>2024/4/3</strike><font color=red>2024/4/8</font> 上课之前(2pm UTC+8)提交到 [mailto:pr2024_nju@163.com pr2024_nju@163.com] (文件名为'<font color=red >学号_姓名_A1.pdf</font>'). | ||
*[[概率论与数理统计 (Spring 2024)/Problem Set 2|Problem Set 2]] 请在 2024/4/ | ** [[概率论与数理统计 (Spring 2024)/第一次作业提交名单|第一次作业提交名单]] | ||
*[[概率论与数理统计 (Spring 2024)/Problem Set 2|Problem Set 2]] 请在 <strike>2024/4/29</strike><font color=red>2024/5/6</font> 上课之前(2pm UTC+8)提交到 [mailto:pr2024_nju@163.com pr2024_nju@163.com] (文件名为'<font color=red >学号_姓名_A2.pdf</font>'). | |||
** [[概率论与数理统计 (Spring 2024)/第二次作业提交名单|第二次作业提交名单]] | |||
*[[概率论与数理统计 (Spring 2024)/Problem Set 3|Problem Set 3]] 请在 2024/5/20 上课之前(2pm UTC+8)提交到 [mailto:pr2024_nju@163.com pr2024_nju@163.com] (文件名为'<font color=red >学号_姓名_A3.pdf</font>'). | |||
** [[概率论与数理统计 (Spring 2024)/第三次作业提交名单|第三次作业提交名单]] | |||
*[[概率论与数理统计 (Spring 2024)/Problem Set 4|Problem Set 4]] 请在 2024/6/12 上课之前(10am UTC+8)提交到 [mailto:pr2024_nju@163.com pr2024_nju@163.com] (文件名为'<font color=red >学号_姓名_A4.pdf</font>'). | |||
** [[概率论与数理统计 (Spring 2024)/第四次作业提交名单|第四次作业提交名单]] | |||
= Lectures = | = Lectures = | ||
Line 140: | Line 146: | ||
#* [[概率论与数理统计 (Spring 2024)/Threshold of k-clique in random graph|Threshold of <math>k</math>-clique in random graph]] | #* [[概率论与数理统计 (Spring 2024)/Threshold of k-clique in random graph|Threshold of <math>k</math>-clique in random graph]] | ||
#* [[概率论与数理统计 (Spring 2024)/Weierstrass Approximation Theorem|Weierstrass approximation]] | #* [[概率论与数理统计 (Spring 2024)/Weierstrass Approximation Theorem|Weierstrass approximation]] | ||
# [http://tcs.nju.edu.cn/slides/prob2024/Continuous.pdf 连续分布] | |||
#* 阅读:'''[BT] 第3章, 和4.1节''' 或 '''[GS] Chapter 4''' | |||
#* 阅读:'''[MU] Chapters 8, 9''' | |||
#* [https://measure.axler.net/MIRA.pdf Measure, Integration & Real Analysis] by Sheldon Axler | |||
# [http://tcs.nju.edu.cn/slides/prob2024/Convergence.pdf 极限定理] | |||
#* 阅读:'''[BT] 第5章''' | |||
#* 阅读:'''[GS] Sections 5.7~5.10, 7.1~7.5''' | |||
# [http://tcs.nju.edu.cn/slides/prob2024/Concentration.pdf 测度集中] | |||
#* 阅读:'''[MU] Chapters 4''' and '''Sections 13.1, 13.4~13.5''' | |||
#* 阅读:'''[GS] Sections 5.11, 12.1~12.3, 7.8~7.9''' | |||
#* [[概率论与数理统计 (Spring 2024)/Hoeffding's lemma|Hoeffding's lemma]] | |||
#* [[概率论与数理统计 (Spring 2024)/Entropy and volume of Hamming balls|Entropy and volume of Hamming balls]] | |||
# [http://tcs.nju.edu.cn/slides/prob2024/Process.pdf 随机过程] | |||
#* 阅读:'''[BT] 第6章, 第7章''' | |||
#* 阅读:'''[MU] Chapters 7, Sections 13.1~13.3''' or '''[GS] Chapters 6, Sections 12.4~12.5''' | |||
#* [[概率论与数理统计 (Spring 2024)/OST and applications|OST and applications]] | |||
#[[Media:Stat01-2024.pdf |统计、推断与点估计]]、 [[Media:Stat02-2024.pdf |假设检验]] | |||
= Concepts = | = Concepts = | ||
Line 207: | Line 230: | ||
** [https://en.wikipedia.org/wiki/Skewness Skewness] | ** [https://en.wikipedia.org/wiki/Skewness Skewness] | ||
** [https://en.wikipedia.org/wiki/Kurtosis Kurtosis] | ** [https://en.wikipedia.org/wiki/Kurtosis Kurtosis] | ||
** [https://en.wikipedia.org/wiki/Moment_problem Moment problem] | |||
* [https://en.wikipedia.org/wiki/Measure_(mathematics) Measure] | |||
** [https://en.wikipedia.org/wiki/Borel_set Borel set] | |||
** [https://en.wikipedia.org/wiki/Lebesgue_integration Lebesgue integration] | |||
** [https://en.wikipedia.org/wiki/Measurable_function Measurable function] | |||
** [https://en.wikipedia.org/wiki/Cantor_set Cantor set] | |||
** [https://en.wikipedia.org/wiki/Non-measurable_set Non-measurable set] | |||
*[https://en.wikipedia.org/wiki/Probability_density_function Probability density function] | |||
** [https://en.wikipedia.org/wiki/Probability_distribution#Absolutely_continuous_probability_distribution Continuous probability distribution] | |||
**[https://en.wikipedia.org/wiki/Conditional_probability_distribution#Conditional_continuous_distributions Conditional continuous distributions] | |||
**[https://en.wikipedia.org/wiki/Convolution_of_probability_distributions Convolution of probability distributions] and [https://en.wikipedia.org/wiki/List_of_convolutions_of_probability_distributions List of convolutions of probability distributions] | |||
* Some '''continuous''' probability distributions | |||
** [https://en.wikipedia.org/wiki/Continuous_uniform_distribution Continuous uniform distribution] | |||
** [https://en.wikipedia.org/wiki/Exponential_distribution Exponential distribution] and [https://en.wikipedia.org/wiki/Poisson_point_process Poisson point process] | |||
** [https://en.wikipedia.org/wiki/Normal_distribution Normal (Gaussion) distribution] | |||
*** [https://en.wikipedia.org/wiki/Gaussian_function Gaussian function] and [https://en.wikipedia.org/wiki/Gaussian_integral Gaussian integral] | |||
*** [https://en.wikipedia.org/wiki/Standard_normal_table Standard normal table] | |||
*** [https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule 68–95–99.7 rule] | |||
*** [https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables Sum of normally distributed random variables] | |||
*** [https://en.wikipedia.org/wiki/Multivariate_normal_distribution Multivariate normal distribution] | |||
** [https://en.wikipedia.org/wiki/Chi-squared_distribution Chi-squared distribution] | |||
** [https://en.wikipedia.org/wiki/Gamma_distribution Gamma distribution] and [https://en.wikipedia.org/wiki/Gamma_function Gamma function] | |||
** [https://en.wikipedia.org/wiki/Beta_distribution Beta distribution] and [https://en.wikipedia.org/wiki/Beta_function Beta function] | |||
** [https://en.wikipedia.org/wiki/Cauchy_distribution Cauchy distribution] | |||
** and [https://en.wikipedia.org/wiki/List_of_probability_distributions#Absolutely_continuous_distributions others] | |||
* [https://en.wikipedia.org/wiki/Inverse_transform_sampling Inverse transform sampling] | |||
* [https://en.wikipedia.org/wiki/Stochastic_dominance Stochastic dominance] and [https://en.wikipedia.org/wiki/Coupling_(probability) Coupling] | |||
* [https://en.wikipedia.org/wiki/Moment-generating_function Moment-generating function] | |||
* [https://en.wikipedia.org/wiki/Convergence_of_random_variables Convergence of random variables] | |||
** [https://en.wikipedia.org/wiki/Pointwise_convergence Pointwise convergence] | |||
** [https://en.wikipedia.org/wiki/Convergence_of_measures#Weak_convergence_of_measures Weak convergence of measures] | |||
** [https://en.wikipedia.org/wiki/Convergence_in_measure Convergence in measure] | |||
** [https://en.wikipedia.org/wiki/Skorokhod%27s_representation_theorem Skorokhod's representation theorem] | |||
** [https://en.wikipedia.org/wiki/Continuous_mapping_theorem Continuous mapping theorem] | |||
* [https://en.wikipedia.org/wiki/Borel%E2%80%93Cantelli_lemma Borel–Cantelli lemma] and [https://en.wikipedia.org/wiki/Zero%E2%80%93one_law zero-one laws] | |||
* [https://en.wikipedia.org/wiki/Law_of_large_numbers Law of large numbers] | |||
* [https://en.wikipedia.org/wiki/Central_limit_theorem Central limit theorem] | |||
** [https://en.wikipedia.org/wiki/De_Moivre%E2%80%93Laplace_theorem De Moivre–Laplace theorem] | |||
** [https://en.wikipedia.org/wiki/Berry%E2%80%93Esseen_theorem Berry–Esseen theorem] | |||
* [https://en.wikipedia.org/wiki/Characteristic_function_(probability_theory) Characteristic function] | |||
** [https://en.wikipedia.org/wiki/Lévy%27s_continuity_theorem Lévy's continuity theorem] | |||
* Concentration of measures: | |||
** [https://en.wikipedia.org/wiki/Moment-generating_function Moment-generating function] | |||
** [https://en.wikipedia.org/wiki/Chernoff_bound Chernoff bound] | |||
** [https://en.wikipedia.org/wiki/Hoeffding%27s_inequality Hoeffding's bound] | |||
** [https://en.wikipedia.org/wiki/Doob_martingale#McDiarmid's_inequality McDiarmid's inequality] | |||
** [https://en.wikipedia.org/wiki/Doob_martingale Doob martingale] and [https://en.wikipedia.org/wiki/Azuma%27s_inequality Azuma's inequality] | |||
** [https://en.wikipedia.org/wiki/Sub-Gaussian_distribution Sub-Gaussian distribution] | |||
* [https://en.wikipedia.org/wiki/Stochastic_process Stochastic process] | |||
* [https://en.wikipedia.org/wiki/Stopping_time Stopping time] | |||
* [https://en.wikipedia.org/wiki/Martingale_(probability_theory) Martingale] | |||
** [https://en.wikipedia.org/wiki/Optional_stopping_theorem Optional stopping theorem] | |||
* [https://en.wikipedia.org/wiki/Wald%27s_equation Wald's equation] | |||
* [https://en.wikipedia.org/wiki/Markov_chain Markov chain] | |||
** [https://en.wikipedia.org/wiki/Markov_property Markov property] and [https://en.wikipedia.org/wiki/Memorylessness memorylessness] | |||
** [https://en.wikipedia.org/wiki/Stochastic_matrix Stochastic matrix] | |||
** [https://en.wikipedia.org/wiki/Stationary_distribution Stationary distribution] |
Latest revision as of 03:46, 10 July 2024
This is the webpage for the Probability Theory and Mathematical Statistics (概率论与数理统计) class of Spring 2024. Students who take this class should check this page periodically for content updates and new announcements.
Announcement
- TBA
Course info
- Instructor :
- 尹一通:<yinyt@nju.edu.cn>,计算机系 804
- 刘景铖:<liu@nju.edu.cn>,计算机系 516
- Teaching assistant:
- 张昕渊:<zhangxy@smail.nju.edu.cn>,计算机系 410
- 邹宗瑞:<zou.zongrui@smail.nju.edu.cn>,计算机系 410
- Class meeting:
- 周一:2pm-4pm,仙Ⅰ-204
- 周三(双):10am-12pm,仙Ⅰ-204
- Office hour:
- Monday, 4pm-5pm, 计算机系 804(尹一通)
- Tuesday, 3pm-4pm, 计算机系 516(刘景铖)
- QQ群: 629856946(申请加入需提供姓名、院系、学号)
Syllabus
课程内容分为三大部分:
- 经典概率论:概率空间、随机变量及其数字特征、多维与连续随机变量、极限定理等内容
- 概率与计算:测度集中现象 (concentration of measure)、概率法 (the probabilistic method)、离散随机过程的相关专题
- 数理统计:参数估计、假设检验、贝叶斯估计、线性回归等统计推断等概念
对于第一和第二部分,要求清楚掌握基本概念,深刻理解关键的现象与规律以及背后的原理,并可以灵活运用所学方法求解相关问题。对于第三部分,要求熟悉数理统计的若干基本概念,以及典型的统计模型和统计推断问题。
经过本课程的训练,力求使学生能够熟悉掌握概率的语言,并会利用概率思维来理解客观世界并对其建模,以及驾驭概率的数学工具来分析和求解专业问题。
教材与参考书 Course Materials
- [BT] 概率导论(第2版·修订版),[美]伯特瑟卡斯(Dimitri P.Bertsekas)[美]齐齐克利斯(John N.Tsitsiklis)著,郑忠国 童行伟 译,人民邮电出版社(2022)。
- [GS] Probability and Random Processes, by Geoffrey Grimmett and David Stirzaker; Oxford University Press; 4th edition (2020).
- [MU] Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis, by Michael Mitzenmacher, Eli Upfal; Cambridge University Press; 2nd edition (2017).
成绩 Grading Policy
- 课程成绩:本课程将会有若干次作业和一次期末考试。最终成绩将由平时作业成绩和期末考试成绩综合得出。
- 迟交:如果有特殊的理由,无法按时完成作业,请提前联系授课老师,给出正当理由。否则迟交的作业将不被接受。
学术诚信 Academic Integrity
学术诚信是所有从事学术活动的学生和学者最基本的职业道德底线,本课程将不遗余力的维护学术诚信规范,违反这一底线的行为将不会被容忍。
作业完成的原则:署你名字的工作必须是你个人的贡献。在完成作业的过程中,允许讨论,前提是讨论的所有参与者均处于同等完成度。但关键想法的执行、以及作业文本的写作必须独立完成,并在作业中致谢(acknowledge)所有参与讨论的人。符合规则的讨论与致谢将不会影响得分。不允许其他任何形式的合作——尤其是与已经完成作业的同学“讨论”。
本课程将对剽窃行为采取零容忍的态度。在完成作业过程中,对他人工作(出版物、互联网资料、其他人的作业等)直接的文本抄袭和对关键思想、关键元素的抄袭,按照 ACM Policy on Plagiarism的解释,都将视为剽窃。剽窃者成绩将被取消。如果发现互相抄袭行为, 抄袭和被抄袭双方的成绩都将被取消。因此请主动防止自己的作业被他人抄袭。
学术诚信影响学生个人的品行,也关乎整个教育系统的正常运转。为了一点分数而做出学术不端的行为,不仅使自己沦为一个欺骗者,也使他人的诚实努力失去意义。让我们一起努力维护一个诚信的环境。
Assignments
- Problem Set 1 请在
2024/4/32024/4/8 上课之前(2pm UTC+8)提交到 pr2024_nju@163.com (文件名为'学号_姓名_A1.pdf'). - Problem Set 2 请在
2024/4/292024/5/6 上课之前(2pm UTC+8)提交到 pr2024_nju@163.com (文件名为'学号_姓名_A2.pdf'). - Problem Set 3 请在 2024/5/20 上课之前(2pm UTC+8)提交到 pr2024_nju@163.com (文件名为'学号_姓名_A3.pdf').
- Problem Set 4 请在 2024/6/12 上课之前(10am UTC+8)提交到 pr2024_nju@163.com (文件名为'学号_姓名_A4.pdf').
Lectures
- 课程简介
- 概率空间
- 阅读:[BT] 第1章 或 [GS] Chapter 1
- Karger's min-cut algorithm
- 随机变量
- 阅读:[BT] 第2章 或 [GS] Chapter 2, Sections 3.1~3.5, 3.7
- 阅读:[MU] Chapter 2
- the Mathematica notebook file for the PMFs of basic discrete distributions
- Average-case analysis of QuickSort
- 高尔顿板(Galton board)视频 和 维基百科页面
- 矩与偏差
- 阅读:[MU] Chapter 3
- 阅读:[BT] 章节 2.4, 4.2, 4.3, 5.1 或 [GS] Sections 3.3, 3.6, 7.3
- Two-point sampling
- Threshold of [math]\displaystyle{ k }[/math]-clique in random graph
- Weierstrass approximation
- 连续分布
- 阅读:[BT] 第3章, 和4.1节 或 [GS] Chapter 4
- 阅读:[MU] Chapters 8, 9
- Measure, Integration & Real Analysis by Sheldon Axler
- 极限定理
- 阅读:[BT] 第5章
- 阅读:[GS] Sections 5.7~5.10, 7.1~7.5
- 测度集中
- 阅读:[MU] Chapters 4 and Sections 13.1, 13.4~13.5
- 阅读:[GS] Sections 5.11, 12.1~12.3, 7.8~7.9
- Hoeffding's lemma
- Entropy and volume of Hamming balls
- 随机过程
- 阅读:[BT] 第6章, 第7章
- 阅读:[MU] Chapters 7, Sections 13.1~13.3 or [GS] Chapters 6, Sections 12.4~12.5
- OST and applications
- 统计、推断与点估计、 假设检验
Concepts
- Interpretations of probability
- History of probability
- Example problems:
- Probability space
- Classical and goemetric probability
- Union bound
- Conditional probability
- Independence
- Random variable
- Random vector
- Some discrete probability distributions
- Balls into bins model
- Random graphs
- Expectation
- Markov's inequality
- Chebyshev's inequality
- Moment related
- Measure
- Probability density function
- Some continuous probability distributions
- Inverse transform sampling
- Stochastic dominance and Coupling
- Moment-generating function
- Convergence of random variables
- Borel–Cantelli lemma and zero-one laws
- Law of large numbers
- Central limit theorem
- Characteristic function
- Concentration of measures:
- Stochastic process
- Stopping time
- Martingale
- Wald's equation
- Markov chain